
Adamant Metanetwork

Smart Contract
Audit Report

24 Jan 2023

Adamant Metanetwork | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Adamant Metanetwork | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Adamant Metanetwork ADMN Binance Smart Chain

| Addresses

Contract address 0xc40657ee2972a9c5b62DD51443c1Bc0FB45e49EA

Contract deployer address 0xcFD5E672c1E1C5C2B1D451b27638493aC437Df5d

| Project Website

https://adamantmetanetwork.com/

| Codebase

https://bscscan.com/address/0xc40657ee2972a9c5b62DD51443c1Bc0FB45e49EA#code

https://adamantmetanetwork.com/
https://bscscan.com/address/0xc40657ee2972a9c5b62DD51443c1Bc0FB45e49EA#code

Adamant Metanetwork | Security Analysis

SUMMARY

The Governance and yield generating token of the Adamant Metanetwork. Have the opportunity to earn BNB
dividends, vote on governance decisions, and more within the Adamant Metanetwork!

| Contract Summary

Documentation Quality

Adamant Metanetwork provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Adamant Metanetwork with the discovery
of several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 87, 99, 112, 113, 124, 136, 148, 152, 164, 171, 180, 800, 830, 893, 1123, 1133, 1137, 1202, 1312,
1312, 1313, 1372, 1568, 1570, 1572, 1578, 1580, 1582, 1613, 1631, 1703 and 1202.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1129, 1175, 1203, 1208, 1296, 1297, 1299, 1300, 1301, 1302, 1304,
1305, 1306, 1307, 1318, 1322, 1373, 1638, 1639, 1658, 1659, 1671, 1672 and 1673.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1471 and
1600.

Adamant Metanetwork | Security Analysis

CONCLUSION

We have audited the Adamant Metanetwork project released on January 2023 to discover issues and identify
potential security vulnerabilities in Adamant Metanetwork Project. This process is used to find technical issues
and security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Adamant Metanetwork smart contract code do not pose a considerable risk. The
writing of the contract is close to the standard of writing contracts in general. The low-risk issues found are
some arithmetic operation issues, a floating pragma is set, tx.origin as a part of authorization control and out
of bounds array access which the index access expression can cause an exception in case of the use of an
invalid array index value. We recommend avoiding "tx.origin" using "tx.origin" as a security control can lead to
authorization bypass vulnerabilities. Consider using "msg.sender" unless you really know what you are doing.

Adamant Metanetwork | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Adamant Metanetwork | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Adamant Metanetwork | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Adamant Metanetwork | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Jan 23 2023 14:18:35 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Jan 24 2023 02:15:47 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File CoinToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 87

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

86 function add(uint256 a, uint256 b) internal pure returns (uint256) {

87 uint256 c = a + b;

88 require(c >= a, "SafeMath: addition overflow");

89

90 return c;

91

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 99

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

98 require(b <= a, errorMessage);

99 uint256 c = a - b;

100

101 return c;

102 }

103

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 112

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

111

112 uint256 c = a * b;

113 require(c / a == b, "SafeMath: multiplication overflow");

114

115 return c;

116

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 113

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

112 uint256 c = a * b;

113 require(c / a == b, "SafeMath: multiplication overflow");

114

115 return c;

116 }

117

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 124

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

123 require(b > 0, errorMessage);

124 uint256 c = a / b;

125 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

126

127 return c;

128

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 136

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

135 require(b != 0, errorMessage);

136 return a % b;

137 }

138 }

139

140

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

147 function mul(int256 a, int256 b) internal pure returns (int256) {

148 int256 c = a * b;

149

150 // Detect overflow when multiplying MIN_INT256 with -1

151 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

152

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 152

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

151 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

152 require((b == 0) || (c / b == a));

153 return c;

154 }

155

156

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 164

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

163 // Solidity already throws when dividing by 0.

164 return a / b;

165 }

166

167 /**

168

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 171

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

170 function sub(int256 a, int256 b) internal pure returns (int256) {

171 int256 c = a - b;

172 require((b >= 0 && c <= a) || (b < 0 && c > a));

173 return c;

174 }

175

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

179 function add(int256 a, int256 b) internal pure returns (int256) {

180 int256 c = a + b;

181 require((b >= 0 && c >= a) || (b < 0 && c < a));

182 return c;

183 }

184

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 800

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

799 // see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

800 uint256 constant internal magnitude = 2**128;

801

802 uint256 internal magnifiedDividendPerShare;

803

804

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 830

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

829 magnifiedDividendPerShare = magnifiedDividendPerShare.add(

830 (amount).mul(magnitude) / totalSupply()

831);

832 emit DividendsDistributed(msg.sender, amount);

833

834

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 893

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

892 function accumulativeDividendOf(address _owner) public view override

returns(uint256) {

893 return magnifiedDividendPerShare.mul(balanceOf(_owner)).toInt256Safe()

894 .add(magnifiedDividendCorrections[_owner]).toUint256Safe() / magnitude;

895 }

896

897

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1122 while(gasUsed < gas && iterations < numberOfTokenHolders) {

1123 _lastProcessedIndex++;

1124

1125 if(_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1126 _lastProcessedIndex = 0;

1127

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1133

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1132 if(processAccount(payable(account), true)) {

1133 claims++;

1134 }

1135 }

1136

1137

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1137

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1136

1137 iterations++;

1138

1139 uint256 newGasLeft = gasleft();

1140

1141

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1201 uint index = tokenHoldersMap.indexOf[key];

1202 uint lastIndex = tokenHoldersMap.keys.length - 1;

1203 address lastKey = tokenHoldersMap.keys[lastIndex];

1204

1205 tokenHoldersMap.indexOf[lastKey] = index;

1206

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1311

1312 uint256 totalSupply = totalSupply_ * (10**18);

1313 swapTokensAtAmount = totalSupply.mul(2).div(10**6); // 0.002%

1314

1315 // use by default 300,000 gas to process auto-claiming dividends

1316

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1311

1312 uint256 totalSupply = totalSupply_ * (10**18);

1313 swapTokensAtAmount = totalSupply.mul(2).div(10**6); // 0.002%

1314

1315 // use by default 300,000 gas to process auto-claiming dividends

1316

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1313

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1312 uint256 totalSupply = totalSupply_ * (10**18);

1313 swapTokensAtAmount = totalSupply.mul(2).div(10**6); // 0.002%

1314

1315 // use by default 300,000 gas to process auto-claiming dividends

1316 gasForProcessing = 300000;

1317

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1372

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1371 function excludeMultipleAccountsFromFees(address[] calldata accounts, bool

excluded) public onlyOwner {

1372 for(uint256 i = 0; i < accounts.length; i++) {

1373 _isExcludedFromFees[accounts[i]] = excluded;

1374 }

1375

1376

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1568

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1567 LFee = amount.mul(buyLiquidityFee).div(100);

1568 AmountLiquidityFee += LFee;

1569 RFee = amount.mul(buyTokenRewardsFee).div(100);

1570 AmountTokenRewardsFee += RFee;

1571 MFee = amount.mul(buyMarketingFee).div(100);

1572

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1570

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1569 RFee = amount.mul(buyTokenRewardsFee).div(100);

1570 AmountTokenRewardsFee += RFee;

1571 MFee = amount.mul(buyMarketingFee).div(100);

1572 AmountMarketingFee += MFee;

1573 DFee = amount.mul(buyDeadFee).div(100);

1574

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1572

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1571 MFee = amount.mul(buyMarketingFee).div(100);

1572 AmountMarketingFee += MFee;

1573 DFee = amount.mul(buyDeadFee).div(100);

1574 fees = LFee.add(RFee).add(MFee).add(DFee);

1575 }

1576

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1578

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1577 LFee = amount.mul(sellLiquidityFee).div(100);

1578 AmountLiquidityFee += LFee;

1579 RFee = amount.mul(sellTokenRewardsFee).div(100);

1580 AmountTokenRewardsFee += RFee;

1581 MFee = amount.mul(sellMarketingFee).div(100);

1582

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1580

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1579 RFee = amount.mul(sellTokenRewardsFee).div(100);

1580 AmountTokenRewardsFee += RFee;

1581 MFee = amount.mul(sellMarketingFee).div(100);

1582 AmountMarketingFee += MFee;

1583 DFee = amount.mul(sellDeadFee).div(100);

1584

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1582

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1581 MFee = amount.mul(sellMarketingFee).div(100);

1582 AmountMarketingFee += MFee;

1583 DFee = amount.mul(sellDeadFee).div(100);

1584 fees = LFee.add(RFee).add(MFee).add(DFee);

1585 }

1586

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1613

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1612 IERC20(rewardToken).transfer(_marketingWalletAddress, newBalance);

1613 AmountMarketingFee = AmountMarketingFee - tokens;

1614 }

1615

1616 function swapAndLiquify(uint256 tokens) private {

1617

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1631

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1630 addLiquidity(otherHalf, newBalance);

1631 AmountLiquidityFee = AmountLiquidityFee - tokens;

1632 emit SwapAndLiquify(half, newBalance, otherHalf);

1633 }

1634

1635

Adamant Metanetwork | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1703

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1702 swapTokensForToken(tokens);

1703 AmountTokenRewardsFee = AmountTokenRewardsFee - tokens;

1704 uint256 dividends = IERC20(rewardToken).balanceOf(address(this));

1705 bool success = IERC20(rewardToken).transfer(address(dividendTracker), dividends);

1706 if (success) {

1707

Adamant Metanetwork | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1202

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

1201 uint index = tokenHoldersMap.indexOf[key];

1202 uint lastIndex = tokenHoldersMap.keys.length - 1;

1203 address lastKey = tokenHoldersMap.keys[lastIndex];

1204

1205 tokenHoldersMap.indexOf[lastKey] = index;

1206

Adamant Metanetwork | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- CoinToken.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity ^0.8.0;

7

8 abstract contract Context {

9 function _msgSender() internal view virtual returns (address) {

10

Adamant Metanetwork | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1471

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- CoinToken.sol

Locations

1470 (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) =

dividendTracker.process(gas);

1471 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,

tx.origin);

1472 }

1473

1474 function claim() external {

1475

Adamant Metanetwork | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1600

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- CoinToken.sol

Locations

1599 try dividendTracker.process(gas) returns (uint256 iterations, uint256 claims,

uint256 lastProcessedIndex) {

1600 emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas,

tx.origin);

1601 }

1602 catch {

1603

1604

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1129

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1128

1129 address account = tokenHoldersMap.keys[_lastProcessedIndex];

1130

1131 if(canAutoClaim(lastClaimTimes[account])) {

1132 if(processAccount(payable(account), true)) {

1133

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1175

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1174 function MAPGetKeyAtIndex(uint index) public view returns (address) {

1175 return tokenHoldersMap.keys[index];

1176 }

1177

1178 function MAPSize() public view returns (uint) {

1179

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1203

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1202 uint lastIndex = tokenHoldersMap.keys.length - 1;

1203 address lastKey = tokenHoldersMap.keys[lastIndex];

1204

1205 tokenHoldersMap.indexOf[lastKey] = index;

1206 delete tokenHoldersMap.indexOf[key];

1207

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1208

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1207

1208 tokenHoldersMap.keys[index] = lastKey;

1209 tokenHoldersMap.keys.pop();

1210 }

1211 }

1212

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1296

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1295) payable ERC20(name_, symbol_) {

1296 rewardToken = addrs[0];

1297 _marketingWalletAddress = addrs[2];

1298

1299 buyTokenRewardsFee = buyFeeSetting_[0];

1300

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1297

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1296 rewardToken = addrs[0];

1297 _marketingWalletAddress = addrs[2];

1298

1299 buyTokenRewardsFee = buyFeeSetting_[0];

1300 buyLiquidityFee = buyFeeSetting_[1];

1301

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1299

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1298

1299 buyTokenRewardsFee = buyFeeSetting_[0];

1300 buyLiquidityFee = buyFeeSetting_[1];

1301 buyMarketingFee = buyFeeSetting_[2];

1302 buyDeadFee = buyFeeSetting_[3];

1303

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1300

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1299 buyTokenRewardsFee = buyFeeSetting_[0];

1300 buyLiquidityFee = buyFeeSetting_[1];

1301 buyMarketingFee = buyFeeSetting_[2];

1302 buyDeadFee = buyFeeSetting_[3];

1303

1304

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1301

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1300 buyLiquidityFee = buyFeeSetting_[1];

1301 buyMarketingFee = buyFeeSetting_[2];

1302 buyDeadFee = buyFeeSetting_[3];

1303

1304 sellTokenRewardsFee = sellFeeSetting_[0];

1305

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1302

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1301 buyMarketingFee = buyFeeSetting_[2];

1302 buyDeadFee = buyFeeSetting_[3];

1303

1304 sellTokenRewardsFee = sellFeeSetting_[0];

1305 sellLiquidityFee = sellFeeSetting_[1];

1306

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1304

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1303

1304 sellTokenRewardsFee = sellFeeSetting_[0];

1305 sellLiquidityFee = sellFeeSetting_[1];

1306 sellMarketingFee = sellFeeSetting_[2];

1307 sellDeadFee = sellFeeSetting_[3];

1308

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1305

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1304 sellTokenRewardsFee = sellFeeSetting_[0];

1305 sellLiquidityFee = sellFeeSetting_[1];

1306 sellMarketingFee = sellFeeSetting_[2];

1307 sellDeadFee = sellFeeSetting_[3];

1308

1309

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1306

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1305 sellLiquidityFee = sellFeeSetting_[1];

1306 sellMarketingFee = sellFeeSetting_[2];

1307 sellDeadFee = sellFeeSetting_[3];

1308

1309

require(buyTokenRewardsFee.add(buyLiquidityFee).add(buyMarketingFee).add(buyDeadFee) <=

25, "Total buy fee is over 25%");

1310

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1307

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1306 sellMarketingFee = sellFeeSetting_[2];

1307 sellDeadFee = sellFeeSetting_[3];

1308

1309

require(buyTokenRewardsFee.add(buyLiquidityFee).add(buyMarketingFee).add(buyDeadFee) <=

25, "Total buy fee is over 25%");

1310

require(sellTokenRewardsFee.add(sellLiquidityFee).add(sellMarketingFee).add(sellDeadFee)

<= 25, "Total sell fee is over 25%");

1311

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1318

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1317

1318 _node = addrs[3];

1319 dividendTracker = new TokenDividendTracker(rewardToken, tokenBalanceForReward_);

1320

1321

1322

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1322

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1321

1322 IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(addrs[1]);

1323 address _uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory())

1324 .createPair(address(this), _uniswapV2Router.WETH());

1325

1326

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1373

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1372 for(uint256 i = 0; i < accounts.length; i++) {

1373 _isExcludedFromFees[accounts[i]] = excluded;

1374 }

1375

1376 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

1377

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1638

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1637 address[] memory path = new address[](2);

1638 path[0] = address(this);

1639 path[1] = uniswapV2Router.WETH();

1640

1641 _approve(address(this), address(uniswapV2Router), tokenAmount);

1642

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1639

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1638 path[0] = address(this);

1639 path[1] = uniswapV2Router.WETH();

1640

1641 _approve(address(this), address(uniswapV2Router), tokenAmount);

1642

1643

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1658

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1657 address[] memory path = new address[](2);

1658 path[0] = address(this);

1659 path[1] = rewardToken;

1660 _approve(address(this), address(uniswapV2Router), tokenAmount);

1661 // make the swap

1662

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1659

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1658 path[0] = address(this);

1659 path[1] = rewardToken;

1660 _approve(address(this), address(uniswapV2Router), tokenAmount);

1661 // make the swap

1662 uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

1663

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1671

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1670 address[] memory path = new address[](3);

1671 path[0] = address(this);

1672 path[1] = uniswapV2Router.WETH();

1673 path[2] = rewardToken;

1674 _approve(address(this), address(uniswapV2Router), tokenAmount);

1675

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1672

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1671 path[0] = address(this);

1672 path[1] = uniswapV2Router.WETH();

1673 path[2] = rewardToken;

1674 _approve(address(this), address(uniswapV2Router), tokenAmount);

1675 // make the swap

1676

Adamant Metanetwork | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1673

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1672 path[1] = uniswapV2Router.WETH();

1673 path[2] = rewardToken;

1674 _approve(address(this), address(uniswapV2Router), tokenAmount);

1675 // make the swap

1676 uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(

1677

Adamant Metanetwork | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Adamant Metanetwork | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

