
MoonBeans

Smart Contract
Audit Report

08 Sep 2021

MoonBeans | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MoonBeans | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MoonBeans BEANS Moonriver

| Addresses

Contract address 0xc2392dd3e3fed2c8ed9f7f0bdf6026fcd1348453

Contract deployer address 0x24312a0b911fE2199fbea92efab55e2ECCeC637D

| Project Website

https://moonbeans.io/

| Codebase

https://moonriver.moonscan.io/address/0xc2392dd3e3fed2c8ed9f7f0bdf6026fcd1348453#code

https://moonbeans.io/
https://moonriver.moonscan.io/address/0xc2392dd3e3fed2c8ed9f7f0bdf6026fcd1348453#code

MoonBeans | Security Analysis

SUMMARY

MoonBeans is one of the leading NFT marketplaces in the Moonriver and Moonbeam network, the first EVM-
compatible para chains built on Kusama and Polkadot.

| Contract Summary

Documentation Quality

MoonBeans provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MoonBeans with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 239, 260, 279, 280, 324, 358, 735, 738, 746, 748, 756, 903, 938, 992, 1108, 1358, 1358, 1434, 1434,
1487, 1662, 1824, 1824, 1961, 1961, 1961 and 1108.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 78, 175, 194,
225, 358, 671, 717, 772, 811, 849, 877, 1078, 1113, 1186, 1208 and 1340.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1090, 1110, 1112, 1487, 1734, 1734, 1749, 1751, 1754 and 1961.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1607 and
1682.

MoonBeans | Security Analysis

CONCLUSION

We have audited the MoonBeans project released on September 2023 to discover issues and identify potential
security vulnerabilities in MoonBeans Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the MoonBeans smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, tx.origin as a part of authorization control and out-of-bounds array
access which the index access expression can cause an exception in case of the use of an invalid array index
value. It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not
vary between builds. This is especially important if you rely on bytecode-level verification of the code. Use of
"tx.origin" as a part of authorization control. Using "tx.origin" as a security control can lead to authorization
bypass vulnerabilities. Consider using "msg.sender" unless you really know what you are doing.

MoonBeans | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

MoonBeans | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

MoonBeans | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

MoonBeans | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Sep 07 2021 08:06:04 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Sep 08 2021 13:58:54 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MOONBEANS.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 239

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

238 /**

239 * @dev Returns the integer division of two unsigned integers. Reverts on

240 * division by zero. The result is rounded towards zero.

241 *

242 * Counterpart to Solidity's `/` operator. Note: this function uses a

243

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 260

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

259 * `revert` opcode (which leaves remaining gas untouched) while Solidity

260 * uses an invalid opcode to revert (consuming all remaining gas).

261 *

262 * Requirements:

263 *

264

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

278 * Counterpart to Solidity's `%` operator. This function uses a `revert`

279 * opcode (which leaves remaining gas untouched) while Solidity uses an

280 * invalid opcode to revert (consuming all remaining gas).

281 *

282 * Requirements:

283

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 280

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

279 * opcode (which leaves remaining gas untouched) while Solidity uses an

280 * invalid opcode to revert (consuming all remaining gas).

281 *

282 * Requirements:

283 *

284

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 324

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

323 * TIP: For a detailed writeup see our guide

324 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-

mechanisms/226[How

325 * to implement supply mechanisms].

326 *

327 * We have followed general OpenZeppelin guidelines: functions revert instead

328

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 358

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

357 *

358 * All two of these values are immutable: they can only be set once during

359 * construction.

360 */

361 constructor(string memory name_, string memory symbol_) public {

362

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 735

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

734 interface DividendPayingTokenInterface {

735 /// @notice View the amount of dividend in wei that an address can withdraw.

736 /// @param _owner The address of a token holder.

737 /// @return The amount of dividend in wei that `_owner` can withdraw.

738 function dividendOf(address _owner) external view returns(uint256);

739

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 738

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

737 /// @return The amount of dividend in wei that `_owner` can withdraw.

738 function dividendOf(address _owner) external view returns(uint256);

739

740

741 /// @notice Withdraws the ether distributed to the sender.

742

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 746

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

745

746 /// @dev This event MUST emit when ether is distributed to token holders.

747 /// @param from The address which sends ether to this contract.

748 /// @param weiAmount The amount of distributed ether in wei.

749 event DividendsDistributed(

750

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 748

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

747 /// @param from The address which sends ether to this contract.

748 /// @param weiAmount The amount of distributed ether in wei.

749 event DividendsDistributed(

750 address indexed from,

751 uint256 weiAmount

752

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 756

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

755 /// @param to The address which withdraws ether from this contract.

756 /// @param weiAmount The amount of withdrawn ether in wei.

757 event DividendWithdrawn(

758 address indexed to,

759 uint256 weiAmount

760

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 903

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

902 /// @notice Withdraws the ether distributed to the sender.

903 /// @dev It emits a `DividendWithdrawn` event if the amount of withdrawn ether is

greater than 0.

904 function withdrawDividend() public virtual override {

905 _withdrawDividendOfUser(msg.sender);

906 }

907

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 938

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

937 /// @param _owner The address of a token holder.

938 /// @return The amount of dividend in wei that `_owner` can withdraw.

939 function withdrawableDividendOf(address _owner) public view override

returns(uint256) {

940 return accumulativeDividendOf(_owner).sub(withdrawnDividends[_owner]);

941 }

942

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 992

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

991

992 magnifiedDividendCorrections[account] = magnifiedDividendCorrections[account]

993 .add((magnifiedDividendPerShare.mul(value)).toInt256Safe());

994 }

995

996

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1108

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1107);

1108 event Sync(uint112 reserve0, uint112 reserve1);

1109

1110 function MINIMUM_LIQUIDITY() external pure returns (uint);

1111 function factory() external view returns (address);

1112

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1358

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1357 uint256 claims,

1358 uint256 lastProcessedIndex,

1359 bool indexed automatic,

1360 uint256 gas,

1361 address indexed processor

1362

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1358

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1357 uint256 claims,

1358 uint256 lastProcessedIndex,

1359 bool indexed automatic,

1360 uint256 gas,

1361 address indexed processor

1362

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1434

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1433

1434 function excludeMultipleAccountsFromFees(address[] calldata accounts, bool

excluded) public onlyOwner {

1435 for(uint256 i = 0; i < accounts.length; i++) {

1436 _isExcludedFromFees[accounts[i]] = excluded;

1437 }

1438

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1434

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1433

1434 function excludeMultipleAccountsFromFees(address[] calldata accounts, bool

excluded) public onlyOwner {

1435 for(uint256 i = 0; i < accounts.length; i++) {

1436 _isExcludedFromFees[accounts[i]] = excluded;

1437 }

1438

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1487

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1486 function updateGasForProcessing(uint256 newValue) public onlyOwner {

1487 require(newValue >= 10000 && newValue <= 1000000, "MOONBEANS: gasForProcessing

must be between 10,000 and 1,000,000");

1488 require(newValue != gasForProcessing, "MOONBEANS: Cannot update gasForProcessing

to same value");

1489 emit GasForProcessingUpdated(newValue, gasForProcessing);

1490 gasForProcessing = newValue;

1491

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1662

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1661 // how much ETH did we just swap into?

1662 uint256 newBalance = address(this).balance.sub(initialBalance);

1663

1664 // add liquidity to uniswap

1665 addLiquidity(otherHalf, newBalance);

1666

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1824

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1823 uint256 secondsUntilAutoClaimAvailable) {

1824 account = _account;

1825

1826 index = tokenHoldersMap.getIndexOfKey(account);

1827

1828

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1824

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1823 uint256 secondsUntilAutoClaimAvailable) {

1824 account = _account;

1825

1826 index = tokenHoldersMap.getIndexOfKey(account);

1827

1828

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1961

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1960 }

1961 }

1962

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1961

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1960 }

1961 }

1962

MoonBeans | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1961

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1960 }

1961 }

1962

MoonBeans | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1108

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MOONBEANS.sol

Locations

1107);

1108 event Sync(uint112 reserve0, uint112 reserve1);

1109

1110 function MINIMUM_LIQUIDITY() external pure returns (uint);

1111 function factory() external view returns (address);

1112

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 78

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

77 * Emits an {Approval} event.

78 */

79 function approve(address spender, uint256 amount) external returns (bool);

80

81 /**

82

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 175

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

174 * - Addition cannot overflow.

175 */

176 function add(uint256 a, uint256 b) internal pure returns (uint256) {

177 uint256 c = a + b;

178 require(c >= a, "SafeMath: addition overflow");

179

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 194

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

193 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

194 return sub(a, b, "SafeMath: subtraction overflow");

195 }

196

197 /**

198

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 225

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

224 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

225 // Gas optimization: this is cheaper than requiring 'a' not being zero, but the

226 // benefit is lost if 'b' is also tested.

227 // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522

228 if (a == 0) {

229

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 358

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

357 *

358 * All two of these values are immutable: they can only be set once during

359 * construction.

360 */

361 constructor(string memory name_, string memory symbol_) public {

362

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 671

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

670 /**

671 * @dev Multiplies two int256 variables and fails on overflow.

672 */

673 function mul(int256 a, int256 b) internal pure returns (int256) {

674 int256 c = a * b;

675

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 717

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

716 return a < 0 ? -a : a;

717 }

718

719

720 function toUint256Safe(int256 a) internal pure returns (uint256) {

721

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 772

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

771 interface DividendPayingTokenOptionalInterface {

772 /// @notice View the amount of dividend in wei that an address can withdraw.

773 /// @param _owner The address of a token holder.

774 /// @return The amount of dividend in wei that `_owner` can withdraw.

775 function withdrawableDividendOf(address _owner) external view returns(uint256);

776

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 811

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

810 * @dev Returns the address of the current owner.

811 */

812 function owner() public view returns (address) {

813 return _owner;

814 }

815

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 849

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

848

849 /// @title Dividend-Paying Token

850 /// @author Roger Wu (https://github.com/roger-wu)

851 /// @dev A mintable ERC20 token that allows anyone to pay and distribute ether

852 /// to token holders as dividends and allows token holders to withdraw their

dividends.

853

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 877

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

876 // where `dividendCorrectionOf(_user)` is updated whenever `balanceOf(_user)` is

changed:

877 // `dividendCorrectionOf(_user) = dividendPerShare * (old balanceOf(_user)) -

(new balanceOf(_user))`.

878 // So now `dividendOf(_user)` returns the same value before and after

`balanceOf(_user)` is changed.

879 mapping(address => int256) internal magnifiedDividendCorrections;

880 mapping(address => uint256) internal withdrawnDividends;

881

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1078

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

1077 interface ISolarPair {

1078 event Approval(address indexed owner, address indexed spender, uint value);

1079 event Transfer(address indexed from, address indexed to, uint value);

1080

1081 function name() external pure returns (string memory);

1082

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1113

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

1112 function token0() external view returns (address);

1113 function token1() external view returns (address);

1114 function getReserves() external view returns (uint112 reserve0, uint112 reserve1,

uint32 blockTimestampLast);

1115 function price0CumulativeLast() external view returns (uint);

1116 function price1CumulativeLast() external view returns (uint);

1117

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1186

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

1185 uint liquidity,

1186 uint amountTokenMin,

1187 uint amountETHMin,

1188 address to,

1189 uint deadline

1190

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1208

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

1207 uint deadline,

1208 bool approveMax, uint8 v, bytes32 r, bytes32 s

1209) external returns (uint amountToken, uint amountETH);

1210 function swapExactTokensForTokens(

1211 uint amountIn,

1212

MoonBeans | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1340

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MOONBEANS.sol

Locations

1339

1340 event LiquidityWalletUpdated(address indexed newLiquidityWallet, address indexed

oldLiquidityWallet);

1341

1342 event GasForProcessingUpdated(uint256 indexed newValue, uint256 indexed oldValue);

1343

1344

MoonBeans | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1607

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- MOONBEANS.sol

Locations

1606 // if any account belongs to _isExcludedFromFee account then remove the fee

1607 if(_isExcludedFromFees[from] || _isExcludedFromFees[to]) {

1608 takeFee = false;

1609 }

1610

1611

MoonBeans | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1682

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- MOONBEANS.sol

Locations

1681 // make the swap

1682 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1683 tokenAmount,

1684 0, // accept any amount of ETH

1685 path,

1686

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1090

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1089 function transfer(address to, uint value) external returns (bool);

1090 function transferFrom(address from, address to, uint value) external returns

(bool);

1091

1092 function DOMAIN_SEPARATOR() external view returns (bytes32);

1093 function PERMIT_TYPEHASH() external pure returns (bytes32);

1094

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1110

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1109

1110 function MINIMUM_LIQUIDITY() external pure returns (uint);

1111 function factory() external view returns (address);

1112 function token0() external view returns (address);

1113 function token1() external view returns (address);

1114

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1112

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1111 function factory() external view returns (address);

1112 function token0() external view returns (address);

1113 function token1() external view returns (address);

1114 function getReserves() external view returns (uint112 reserve0, uint112 reserve1,

uint32 blockTimestampLast);

1115 function price0CumulativeLast() external view returns (uint);

1116

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1487

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1486 function updateGasForProcessing(uint256 newValue) public onlyOwner {

1487 require(newValue >= 10000 && newValue <= 1000000, "MOONBEANS: gasForProcessing

must be between 10,000 and 1,000,000");

1488 require(newValue != gasForProcessing, "MOONBEANS: Cannot update gasForProcessing

to same value");

1489 emit GasForProcessingUpdated(newValue, gasForProcessing);

1490 gasForProcessing = newValue;

1491

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1734

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1733 if (success) {

1734 dividendTracker.distributeCAKEDividends(dividends);

1735 emit SendDividends(tokens, dividends);

1736 }

1737 }

1738

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1734

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1733 if (success) {

1734 dividendTracker.distributeCAKEDividends(dividends);

1735 emit SendDividends(tokens, dividends);

1736 }

1737 }

1738

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1749

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1748

1749 function setRewardToken(address newToken) public onlyOwner {

1750 CAKE = newToken;

1751 }

1752 }

1753

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1751

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1750 CAKE = newToken;

1751 }

1752 }

1753

1754 contract BEANSDividendTracker is Ownable, DividendPayingToken {

1755

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1754

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1753

1754 contract BEANSDividendTracker is Ownable, DividendPayingToken {

1755 using SafeMath for uint256;

1756 using SafeMathInt for int256;

1757 using IterableMapping for IterableMapping.Map;

1758

MoonBeans | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1961

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MOONBEANS.sol

Locations

1960 }

1961 }

1962

MoonBeans | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MoonBeans | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

