
BPTL

Smart Contract
Audit Report

24 Jan 2023

BPTL | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

BPTL | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

BPTL BPTL Ethereum

| Addresses

Contract address 0x3a1bc4014c4c493db3dbfbdd8ee1417113b462bf

Contract deployer address 0x8DF71E2fb1eCEBED2c5013963eE51A19D1FF1E65

| Project Website

https://blockportal.info/

| Codebase

https://etherscan.io/address/0x3a1bc4014c4c493db3dbfbdd8ee1417113b462bf#code

https://blockportal.info/
https://etherscan.io/address/0x3a1bc4014c4c493db3dbfbdd8ee1417113b462bf#code

BPTL | Security Analysis

SUMMARY

All-in-one social network that allows governing/trading crypto assets at the same time providing a means to
interact with each other on a 1-on-1 or group basis. BlockPortal ecosystem consists of several trading, social +
community features along with a marketplace. Moreover, the platform will have robust payment automation
and peer-to-peer crypto & NFT transfers.

| Contract Summary

Documentation Quality

BPTL provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by BPTL with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 276, 276, 277, 277, 279, 279, 280, 280, 281, 281, 290, 290, 291, 291, 295, 295, 296, 296, 306, 306,
307, 307, 308, 308, 325, 325, 390, 402, 415, 496, 505, 532, 533, 547, 666, 682 and 685.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 19.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 391, 403, 537 and 538.

BPTL | Security Analysis

CONCLUSION

We have audited the BPTL project released on January 2023 to discover issues and identify potential security
vulnerabilities in BPTL Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the BPTL smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

BPTL | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

BPTL | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

BPTL | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

BPTL | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Jan 23 2023 04:14:59 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Jan 24 2023 09:52:17 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BPTL.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

275 uint8 private constant _decimals = 18;

276 uint256 internal constant _totalSupply = 1_000_000_000 * 10**_decimals;

277 uint32 private constant percent_helper = 100 * 10**2;

278 //Settings limits

279 uint32 private constant max_fee = 90.00 * 10**2;

280

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

275 uint8 private constant _decimals = 18;

276 uint256 internal constant _totalSupply = 1_000_000_000 * 10**_decimals;

277 uint32 private constant percent_helper = 100 * 10**2;

278 //Settings limits

279 uint32 private constant max_fee = 90.00 * 10**2;

280

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

276 uint256 internal constant _totalSupply = 1_000_000_000 * 10**_decimals;

277 uint32 private constant percent_helper = 100 * 10**2;

278 //Settings limits

279 uint32 private constant max_fee = 90.00 * 10**2;

280 uint32 private constant min_maxes = 0.50 * 10**2;

281

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

276 uint256 internal constant _totalSupply = 1_000_000_000 * 10**_decimals;

277 uint32 private constant percent_helper = 100 * 10**2;

278 //Settings limits

279 uint32 private constant max_fee = 90.00 * 10**2;

280 uint32 private constant min_maxes = 0.50 * 10**2;

281

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

278 //Settings limits

279 uint32 private constant max_fee = 90.00 * 10**2;

280 uint32 private constant min_maxes = 0.50 * 10**2;

281 uint32 private constant burn_limit = 10.00 * 10**2;

282

283

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

278 //Settings limits

279 uint32 private constant max_fee = 90.00 * 10**2;

280 uint32 private constant min_maxes = 0.50 * 10**2;

281 uint32 private constant burn_limit = 10.00 * 10**2;

282

283

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 280

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

279 uint32 private constant max_fee = 90.00 * 10**2;

280 uint32 private constant min_maxes = 0.50 * 10**2;

281 uint32 private constant burn_limit = 10.00 * 10**2;

282

283 //OpenTrade

284

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 280

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

279 uint32 private constant max_fee = 90.00 * 10**2;

280 uint32 private constant min_maxes = 0.50 * 10**2;

281 uint32 private constant burn_limit = 10.00 * 10**2;

282

283 //OpenTrade

284

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 281

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

280 uint32 private constant min_maxes = 0.50 * 10**2;

281 uint32 private constant burn_limit = 10.00 * 10**2;

282

283 //OpenTrade

284 bool public trade_open;

285

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 281

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

280 uint32 private constant min_maxes = 0.50 * 10**2;

281 uint32 private constant burn_limit = 10.00 * 10**2;

282

283 //OpenTrade

284 bool public trade_open;

285

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 290

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

289 address public team_wallet;

290 uint32 public fee_buy = 8.00 * 10**2;

291 uint32 public fee_sell = 8.00 * 10**2;

292 /*

293

294

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 290

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

289 address public team_wallet;

290 uint32 public fee_buy = 8.00 * 10**2;

291 uint32 public fee_sell = 8.00 * 10**2;

292 /*

293

294

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 291

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

290 uint32 public fee_buy = 8.00 * 10**2;

291 uint32 public fee_sell = 8.00 * 10**2;

292 /*

293

294 */

295

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 291

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

290 uint32 public fee_buy = 8.00 * 10**2;

291 uint32 public fee_sell = 8.00 * 10**2;

292 /*

293

294 */

295

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 295

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

294 */

295 uint32 public fee_early_sell = 30.00 * 10**2;

296 uint32 public lp_percent = 25.00 * 10**2;

297

298 //Ignore fee

299

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 295

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

294 */

295 uint32 public fee_early_sell = 30.00 * 10**2;

296 uint32 public lp_percent = 25.00 * 10**2;

297

298 //Ignore fee

299

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 296

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

295 uint32 public fee_early_sell = 30.00 * 10**2;

296 uint32 public lp_percent = 25.00 * 10**2;

297

298 //Ignore fee

299 mapping(address => bool) public ignore_fee;

300

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 296

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

295 uint32 public fee_early_sell = 30.00 * 10**2;

296 uint32 public lp_percent = 25.00 * 10**2;

297

298 //Ignore fee

299 mapping(address => bool) public ignore_fee;

300

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 306

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

305 //Maxes

306 uint256 public max_tx = 7_500_000 * 10**_decimals; //0.75%

307 uint256 public max_wallet = 10_000_000 * 10**_decimals; //1.00%

308 uint256 public swap_at_amount = 1_000_000 * 10**_decimals; //0.10%

309

310

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 306

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

305 //Maxes

306 uint256 public max_tx = 7_500_000 * 10**_decimals; //0.75%

307 uint256 public max_wallet = 10_000_000 * 10**_decimals; //1.00%

308 uint256 public swap_at_amount = 1_000_000 * 10**_decimals; //0.10%

309

310

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 307

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

306 uint256 public max_tx = 7_500_000 * 10**_decimals; //0.75%

307 uint256 public max_wallet = 10_000_000 * 10**_decimals; //1.00%

308 uint256 public swap_at_amount = 1_000_000 * 10**_decimals; //0.10%

309

310 //ERC20

311

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 307

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

306 uint256 public max_tx = 7_500_000 * 10**_decimals; //0.75%

307 uint256 public max_wallet = 10_000_000 * 10**_decimals; //1.00%

308 uint256 public swap_at_amount = 1_000_000 * 10**_decimals; //0.10%

309

310 //ERC20

311

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 308

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

307 uint256 public max_wallet = 10_000_000 * 10**_decimals; //1.00%

308 uint256 public swap_at_amount = 1_000_000 * 10**_decimals; //0.10%

309

310 //ERC20

311 mapping(address => uint256) internal _balances;

312

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 308

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

307 uint256 public max_wallet = 10_000_000 * 10**_decimals; //1.00%

308 uint256 public swap_at_amount = 1_000_000 * 10**_decimals; //0.10%

309

310 //ERC20

311 mapping(address => uint256) internal _balances;

312

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

324 {

325 return (_input * _percent) / percent_helper;

326 }

327

328 bool private inSwap = false;

329

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

324 {

325 return (_input * _percent) / percent_helper;

326 }

327

328 bool private inSwap = false;

329

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 390

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

389 unchecked {

390 for (uint256 i = 0; i < _input.length; i++) {

391 ignore_fee[_input[i]] = _enabled;

392 }

393 }

394

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

401 unchecked {

402 for (uint256 i = 0; i < _input.length; i++) {

403 address addr = _input[i];

404 require(

405 addr != address(0),

406

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 415

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

414 require(

415 block.timestamp > burn_last + burn_cooldown,

416 "Burn cooldown active"

417);

418 uint256 liquidityPairBalance = this.balanceOf(pair_addr);

419

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 496

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

495 require(amount >= fee_amount, "fee exceeds amount");

496 amount -= fee_amount;

497 }

498 //Disable maxes

499 if (limits_active) {

500

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 505

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

504 require(

505 _balances[to] + amount <= max_wallet,

506 "Max wallet reached"

507);

508 }

509

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 532

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

531 function SwapTokensForEth(uint256 _amount) private lockTheSwap {

532 uint256 eth_am = CalcPercent(_amount, percent_helper - lp_percent);

533 uint256 liq_am = _amount - eth_am;

534 uint256 balance_before = address(this).balance;

535

536

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 533

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

532 uint256 eth_am = CalcPercent(_amount, percent_helper - lp_percent);

533 uint256 liq_am = _amount - eth_am;

534 uint256 balance_before = address(this).balance;

535

536 address[] memory path = new address[](2);

537

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 547

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

546);

547 uint256 liq_eth = address(this).balance - balance_before;

548

549 AddLiquidity(liq_am, CalcPercent(liq_eth, lp_percent));

550 }

551

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 666

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

665 unchecked {

666 _approve(owner, spender, currentAllowance - amount);

667 }

668 }

669 }

670

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 682

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

681 unchecked {

682 _balances[from] = fromBalance - amount;

683 // Overflow not possible: the sum of all balances is capped by totalSupply, and the

sum is preserved by

684 // decrementing then incrementing.

685 _balances[to] += amount;

686

BPTL | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 685

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BPTL.sol

Locations

684 // decrementing then incrementing.

685 _balances[to] += amount;

686 }

687

688 emit Transfer(from, to, amount);

689

BPTL | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 19

low SEVERITY
The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BPTL.sol

Locations

18 */

19 pragma solidity ^0.8.17;

20

21 /**

22 * @dev Provides information about the current execution context, including the

23

BPTL | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 391

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BPTL.sol

Locations

390 for (uint256 i = 0; i < _input.length; i++) {

391 ignore_fee[_input[i]] = _enabled;

392 }

393 }

394 }

395

BPTL | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 403

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BPTL.sol

Locations

402 for (uint256 i = 0; i < _input.length; i++) {

403 address addr = _input[i];

404 require(

405 addr != address(0),

406 "ERC20: transfer to the zero address"

407

BPTL | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 537

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BPTL.sol

Locations

536 address[] memory path = new address[](2);

537 path[0] = address(this);

538 path[1] = uniswapV2Router.WETH();

539 _approve(address(this), address(uniswapV2Router), _amount);

540 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

541

BPTL | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 538

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BPTL.sol

Locations

537 path[0] = address(this);

538 path[1] = uniswapV2Router.WETH();

539 _approve(address(this), address(uniswapV2Router), _amount);

540 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

541 eth_am,

542

BPTL | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

BPTL | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

