
Shibarium DAO

Smart Contract
Audit Report

30 Jan 2023

Shibarium DAO | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Shibarium DAO | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Shibarium DAO SHIBDAO Ethereum

| Addresses

Contract address 0x15316d2438A8D7D534e4233B8E0edacD64c9FCde

Contract deployer address 0xd4960267891F83f53979Ce5a439849EfA81B7549

| Project Website

https://shibariumdao.io/

| Codebase

https://etherscan.io/address/0x15316d2438A8D7D534e4233B8E0edacD64c9FCde#code

https://shibariumdao.io/
https://etherscan.io/address/0x15316d2438A8D7D534e4233B8E0edacD64c9FCde#code

Shibarium DAO | Security Analysis

SUMMARY

Shibarium DAO is the first decentralized organization founded to develop a community on the Shibarium
blockchain. In addition to creating the community itself, we are also creating a special place for them in the
form of a decentralized community platform where they can feel completely free.

| Contract Summary

Documentation Quality

Shibarium DAO provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Shibarium DAO with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 139, 140, 146, 147, 148, 149,
151, 152, 156, 157, 158, 160, 161, 162, 163, 164, 170, 171, 173, 174, 175, 177, 184, 185, 186, 190, 193 and
199.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 146, 146, 147, 147, 148, 148, 149, 149, 162, 191, 192, 253, 253, 257, 257, 261, 261, 305, 312, 312,
321, 321, 338, 339, 339, 349, 372, 403, 413, 434, 435, 443, 461, 467, 467, 497, 500, 501, 509, 509, 511,
513, 581, 581, 582, 582, 590, 590, 621, 622, 622, 626 and 626.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 21.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 307, 307, 311, 312, 530 and 531.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 481, 485, 488
and 488.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 337, 424, 461,
472, 476, 481, 484, 485, 487, 488 and 497.

Shibarium DAO | Security Analysis

CONCLUSION

We have audited the Shibarium DAO project released on January 2023 to discover issues and identify potential
security vulnerabilities in Shibarium DAO Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Shibarium DAO smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general but there are still much low risk issues that
must be fixed. The low-risk issues found are some arithmetic operation issues, a floating pragma is set, a state
variable visibility is not set, weak sources of randomness, tx.origin as a part of authorization control and out of
bounds array access which the index access expression can cause an exception in case of the use of an
invalid array index value. We recommend solving with lock the pragma version and also consider known bugs
(https://github.com/ethereum/solidity/releases) for the compiler version that is chosen. Variables can be
specified as being public, internal or private. Explicitly define visibility for all state variables. The "tx.origin"
should not be used for authorization. Use "msg.sender" instead. Using a commitment scheme, e.g. RANDAO.
Using external sources of randomness via oracles, e.g. Oraclize. Note that this approach requires trusting in
oracle, thus it may be reasonable to use multiple oracles. Using Bitcoin block hashes, as they are more
expensive to mine.

Shibarium DAO | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Shibarium DAO | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Shibarium DAO | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Shibarium DAO | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Jan 29 2023 21:27:07 GMT+0000 (Coordinated Universal Time)

Finished Monday Jan 30 2023 02:38:28 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ShibariumDAO.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

145

146 uint256 _totalSupply = 1_000_000_000 * (10**_decimals);

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 146

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

145

146 uint256 _totalSupply = 1_000_000_000 * (10**_decimals);

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

146 uint256 _totalSupply = 1_000_000_000 * (10**_decimals);

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

146 uint256 _totalSupply = 1_000_000_000 * (10**_decimals);

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151 mapping(address => uint256) _balances;

152

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 148

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151 mapping(address => uint256) _balances;

152

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 149

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151 mapping(address => uint256) _balances;

152 mapping(address => mapping(address => uint256)) _allowances;

153

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 149

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151 mapping(address => uint256) _balances;

152 mapping(address => mapping(address => uint256)) _allowances;

153

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 162

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

161 uint256 liquidityFee = 300;

162 uint256 totalFee = marketingFee + liquidityFee;

163 uint256 sellBias = 0;

164 uint256 feeDenominator = 10000;

165

166

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 191

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

190 bool processEnabled = true;

191 uint256 public swapThreshold = _totalSupply / 1000;

192 uint256 public swapMinimum = _totalSupply / 10000;

193 bool inSwap;

194 modifier swapping() {

195

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 192

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

191 uint256 public swapThreshold = _totalSupply / 1000;

192 uint256 public swapMinimum = _totalSupply / 10000;

193 bool inSwap;

194 modifier swapping() {

195 inSwap = true;

196

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 253

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

252 function maxBuyTxTokens() external view returns (uint256) {

253 return _maxBuyTxAmount / (10**_decimals);

254 }

255

256 function maxSellTxTokens() external view returns (uint256) {

257

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 253

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

252 function maxBuyTxTokens() external view returns (uint256) {

253 return _maxBuyTxAmount / (10**_decimals);

254 }

255

256 function maxSellTxTokens() external view returns (uint256) {

257

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 257

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

256 function maxSellTxTokens() external view returns (uint256) {

257 return _maxSellTxAmount / (10**_decimals);

258 }

259

260 function maxWalletTokens() external view returns (uint256) {

261

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 257

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

256 function maxSellTxTokens() external view returns (uint256) {

257 return _maxSellTxAmount / (10**_decimals);

258 }

259

260 function maxWalletTokens() external view returns (uint256) {

261

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 261

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

260 function maxWalletTokens() external view returns (uint256) {

261 return _maxWalletSize / (10**_decimals);

262 }

263

264 function balanceOf(address account) public view override returns (uint256) {

265

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 261

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

260 function maxWalletTokens() external view returns (uint256) {

261 return _maxWalletSize / (10**_decimals);

262 }

263

264 function balanceOf(address account) public view override returns (uint256) {

265

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

304

305 for (uint256 i = 0; i < addresses.length; i++) {

306 if (

307 !liquidityPools[addresses[i]] && !liquidityCreator[addresses[i]]

308) {

309

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

311 addresses[i],

312 amounts[i] * (10**_decimals)

313);

314 }

315 }

316

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

311 addresses[i],

312 amounts[i] * (10**_decimals)

313);

314 }

315 }

316

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

320 uint256 amountETH = address(this).balance;

321 payable(devWallet).transfer((amountETH * amount) / 100);

322 }

323 }

324

325

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

320 uint256 amountETH = address(this).balance;

321 payable(devWallet).transfer((amountETH * amount) / 100);

322 }

323 }

324

325

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 338

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

337 launchedAt = block.number;

338 protectionTimer = block.timestamp + _protection;

339 protectionLimit = _limit * (10**_decimals);

340 }

341

342

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 339

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

338 protectionTimer = block.timestamp + _protection;

339 protectionLimit = _limit * (10**_decimals);

340 }

341

342 function enableProtection(bool _protect, uint256 _addTime)

343

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 339

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

338 protectionTimer = block.timestamp + _protection;

339 protectionLimit = _limit * (10**_decimals);

340 }

341

342 function enableProtection(bool _protect, uint256 _addTime)

343

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 349

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

348 require(_addTime < 1 days);

349 protectionTimer += _addTime;

350 }

351

352 function disableProtection() external onlyTeam {

353

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 372

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

371 _allowances[sender][msg.sender] =

372 _allowances[sender][msg.sender] -

373 amount;

374 }

375

376

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

402

403 _balances[sender] = _balances[sender] - amount;

404

405 uint256 amountReceived = feeExcluded(sender)

406 ? takeFee(recipient, amount)

407

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

412

413 _balances[recipient] = _balances[recipient] + amountReceived;

414

415 emit Transfer(sender, recipient, amountReceived);

416 return true;

417

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 434

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

433) internal returns (bool) {

434 _balances[sender] = _balances[sender] - amount;

435 _balances[recipient] = _balances[recipient] + amount;

436 emit Transfer(sender, recipient, amount);

437 return true;

438

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 435

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

434 _balances[sender] = _balances[sender] - amount;

435 _balances[recipient] = _balances[recipient] + amount;

436 emit Transfer(sender, recipient, amount);

437 return true;

438 }

439

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 443

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

442 require(

443 _balances[recipient] + amount <= walletLimit,

444 "Transfer amount exceeds the bag size."

445);

446 }

447

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 461

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

460 isTxLimitExempt[sender] ||

461 lastBuy[recipient] + rateLimit <= block.number,

462 "Transfer rate limit exceeded."

463);

464

465

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 467

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

466 require(

467 amount <= protectionLimit * (10**_decimals) &&

468 lastSell[sender] == 0 &&

469 protectionTimer > block.timestamp,

470 "Wallet protected, please contact support."

471

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 467

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

466 require(

467 amount <= protectionLimit * (10**_decimals) &&

468 lastSell[sender] == 0 &&

469 protectionTimer > block.timestamp,

470 "Wallet protected, please contact support."

471

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 497

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

496 function getTotalFee(bool selling) public view returns (uint256) {

497 if (launchedAt + deadBlocks >= block.number) {

498 return feeDenominator;

499 }

500 if (selling) return totalFee + sellBias;

501

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 500

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

499 }

500 if (selling) return totalFee + sellBias;

501 return totalFee - sellBias;

502 }

503

504

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 501

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

500 if (selling) return totalFee + sellBias;

501 return totalFee - sellBias;

502 }

503

504 function takeFee(address recipient, uint256 amount)

505

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 509

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

508 bool selling = liquidityPools[recipient];

509 uint256 feeAmount = (amount * getTotalFee(selling)) / feeDenominator;

510

511 _balances[address(this)] += feeAmount;

512

513

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 509

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

508 bool selling = liquidityPools[recipient];

509 uint256 feeAmount = (amount * getTotalFee(selling)) / feeDenominator;

510

511 _balances[address(this)] += feeAmount;

512

513

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 511

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

510

511 _balances[address(this)] += feeAmount;

512

513 return amount - feeAmount;

514 }

515

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 513

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

512

513 return amount - feeAmount;

514 }

515

516 function shouldSwapBack(address recipient) internal view returns (bool) {

517

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 581

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

580);

581 _maxBuyTxAmount = (_totalSupply * buyNumerator) / divisor;

582 _maxSellTxAmount = (_totalSupply * sellNumerator) / divisor;

583 }

584

585

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 581

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

580);

581 _maxBuyTxAmount = (_totalSupply * buyNumerator) / divisor;

582 _maxSellTxAmount = (_totalSupply * sellNumerator) / divisor;

583 }

584

585

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 582

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

581 _maxBuyTxAmount = (_totalSupply * buyNumerator) / divisor;

582 _maxSellTxAmount = (_totalSupply * sellNumerator) / divisor;

583 }

584

585 function setMaxWallet(uint256 numerator, uint256 divisor)

586

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 582

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

581 _maxBuyTxAmount = (_totalSupply * buyNumerator) / divisor;

582 _maxSellTxAmount = (_totalSupply * sellNumerator) / divisor;

583 }

584

585 function setMaxWallet(uint256 numerator, uint256 divisor)

586

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 590

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

589 require(numerator > 0 && divisor > 0 && divisor <= 10000);

590 _maxWalletSize = (_totalSupply * numerator) / divisor;

591 }

592

593 function setIsFeeExempt(address holder, bool exempt) external onlyOwner {

594

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 590

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

589 require(numerator > 0 && divisor > 0 && divisor <= 10000);

590 _maxWalletSize = (_totalSupply * numerator) / divisor;

591 }

592

593 function setIsFeeExempt(address holder, bool exempt) external onlyOwner {

594

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 621

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

620 processEnabled = _processEnabled;

621 swapThreshold = _totalSupply / _denominator;

622 swapMinimum = _swapMinimum * (10**_decimals);

623 }

624

625

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 622

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

621 swapThreshold = _totalSupply / _denominator;

622 swapMinimum = _swapMinimum * (10**_decimals);

623 }

624

625 function getCurrentSupply() public view returns (uint256) {

626

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 622

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

621 swapThreshold = _totalSupply / _denominator;

622 swapMinimum = _swapMinimum * (10**_decimals);

623 }

624

625 function getCurrentSupply() public view returns (uint256) {

626

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 626

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

625 function getCurrentSupply() public view returns (uint256) {

626 return _totalSupply - (balanceOf(DEAD) + balanceOf(ZERO));

627 }

628

629 event FundsDistributed(uint256 marketingFee);

630

Shibarium DAO | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 626

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ShibariumDAO.sol

Locations

625 function getCurrentSupply() public view returns (uint256) {

626 return _totalSupply - (balanceOf(DEAD) + balanceOf(ZERO));

627 }

628

629 event FundsDistributed(uint256 marketingFee);

630

Shibarium DAO | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 21

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ShibariumDAO.sol

Locations

20

21 pragma solidity ^0.8.7;

22

23 abstract contract Context {

24 function _msgSender() internal view returns (address payable) {

25

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 139

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "DEAD" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

138 contract ShibariumDAO is IERC20, Ownable {

139 address DEAD = 0x000000000000000000000000000000000000dEaD;

140 address ZERO = 0x00;

141

142 string constant _name = "Shibarium DAO";

143

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 140

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ZERO" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

139 address DEAD = 0x000000000000000000000000000000000000dEaD;

140 address ZERO = 0x00;

141

142 string constant _name = "Shibarium DAO";

143 string constant _symbol = "SHIBDAO";

144

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 146

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

145

146 uint256 _totalSupply = 1_000_000_000 * (10**_decimals);

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 147

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_maxBuyTxAmount"
is internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

146 uint256 _totalSupply = 1_000_000_000 * (10**_decimals);

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 148

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_maxSellTxAmount"
is internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

147 uint256 _maxBuyTxAmount = (_totalSupply * 1) / 10;

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151 mapping(address => uint256) _balances;

152

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 149

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_maxWalletSize" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

148 uint256 _maxSellTxAmount = (_totalSupply * 1) / 10;

149 uint256 _maxWalletSize = (_totalSupply * 1) / 10;

150

151 mapping(address => uint256) _balances;

152 mapping(address => mapping(address => uint256)) _allowances;

153

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 151

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

150

151 mapping(address => uint256) _balances;

152 mapping(address => mapping(address => uint256)) _allowances;

153 mapping(address => uint256) public lastSell;

154 mapping(address => uint256) public lastBuy;

155

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 152

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

151 mapping(address => uint256) _balances;

152 mapping(address => mapping(address => uint256)) _allowances;

153 mapping(address => uint256) public lastSell;

154 mapping(address => uint256) public lastBuy;

155

156

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 156

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isFeeExempt" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

155

156 mapping(address => bool) isFeeExempt;

157 mapping(address => bool) isTxLimitExempt;

158 mapping(address => bool) liquidityCreator;

159

160

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 157

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTxLimitExempt" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

156 mapping(address => bool) isFeeExempt;

157 mapping(address => bool) isTxLimitExempt;

158 mapping(address => bool) liquidityCreator;

159

160 uint256 marketingFee = 200;

161

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 158

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "liquidityCreator" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

157 mapping(address => bool) isTxLimitExempt;

158 mapping(address => bool) liquidityCreator;

159

160 uint256 marketingFee = 200;

161 uint256 liquidityFee = 300;

162

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 160

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingFee" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

159

160 uint256 marketingFee = 200;

161 uint256 liquidityFee = 300;

162 uint256 totalFee = marketingFee + liquidityFee;

163 uint256 sellBias = 0;

164

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 161

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "liquidityFee" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

160 uint256 marketingFee = 200;

161 uint256 liquidityFee = 300;

162 uint256 totalFee = marketingFee + liquidityFee;

163 uint256 sellBias = 0;

164 uint256 feeDenominator = 10000;

165

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 162

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "totalFee" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

161 uint256 liquidityFee = 300;

162 uint256 totalFee = marketingFee + liquidityFee;

163 uint256 sellBias = 0;

164 uint256 feeDenominator = 10000;

165

166

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 163

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "sellBias" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

162 uint256 totalFee = marketingFee + liquidityFee;

163 uint256 sellBias = 0;

164 uint256 feeDenominator = 10000;

165

166 address payable public liquidityFeeReceiver = payable(address(this));

167

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 164

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "feeDenominator" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

163 uint256 sellBias = 0;

164 uint256 feeDenominator = 10000;

165

166 address payable public liquidityFeeReceiver = payable(address(this));

167 address public marketingFeeReceiver;

168

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 170

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "routerAddress" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

169 IDEXRouter public router;

170 address routerAddress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;

171 mapping(address => bool) liquidityPools;

172 mapping(address => uint256) public protected;

173 bool protectionEnabled = true;

174

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 171

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "liquidityPools" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

170 address routerAddress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;

171 mapping(address => bool) liquidityPools;

172 mapping(address => uint256) public protected;

173 bool protectionEnabled = true;

174 bool protectionDisabled = false;

175

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 173

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protectionEnabled" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

172 mapping(address => uint256) public protected;

173 bool protectionEnabled = true;

174 bool protectionDisabled = false;

175 uint256 protectionLimit;

176 uint256 public protectionCount;

177

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 174

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protectionDisabled" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

173 bool protectionEnabled = true;

174 bool protectionDisabled = false;

175 uint256 protectionLimit;

176 uint256 public protectionCount;

177 uint256 protectionTimer;

178

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 175

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protectionLimit" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

174 bool protectionDisabled = false;

175 uint256 protectionLimit;

176 uint256 public protectionCount;

177 uint256 protectionTimer;

178

179

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 177

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protectionTimer" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

176 uint256 public protectionCount;

177 uint256 protectionTimer;

178

179 address public pair;

180

181

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 184

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "startBullRun" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

183 uint256 public deadBlocks;

184 bool startBullRun = false;

185 bool pauseDisabled = false;

186 bool _feeOn = true;

187 uint256 public rateLimit = 2;

188

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 185

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "pauseDisabled" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

184 bool startBullRun = false;

185 bool pauseDisabled = false;

186 bool _feeOn = true;

187 uint256 public rateLimit = 2;

188

189

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 186

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_feeOn" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

185 bool pauseDisabled = false;

186 bool _feeOn = true;

187 uint256 public rateLimit = 2;

188

189 bool public swapEnabled = false;

190

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 190

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "processEnabled" is
internal. Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

189 bool public swapEnabled = false;

190 bool processEnabled = true;

191 uint256 public swapThreshold = _totalSupply / 1000;

192 uint256 public swapMinimum = _totalSupply / 10000;

193 bool inSwap;

194

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 193

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

192 uint256 public swapMinimum = _totalSupply / 10000;

193 bool inSwap;

194 modifier swapping() {

195 inSwap = true;

196 _;

197

Shibarium DAO | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 199

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "devWallet" is internal.
Other possible visibility settings are public and private.

Source File
- ShibariumDAO.sol

Locations

198 }

199 address devWallet;

200 modifier onlyTeam() {

201 require(_msgSender() == devWallet, "Caller is not a team member");

202 _;

203

Shibarium DAO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 481

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- ShibariumDAO.sol

Locations

480 protectionTimer > block.timestamp &&

481 lastBuy[tx.origin] == block.number &&

482 protected[recipient] == 0

483) {

484 protected[recipient] = block.number;

485

Shibarium DAO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 485

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- ShibariumDAO.sol

Locations

484 protected[recipient] = block.number;

485 emit ProtectedWallet(tx.origin, recipient, block.number, 1);

486 }

487 lastBuy[recipient] = block.number;

488 if (tx.origin != recipient) lastBuy[tx.origin] = block.number;

489

Shibarium DAO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 488

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- ShibariumDAO.sol

Locations

487 lastBuy[recipient] = block.number;

488 if (tx.origin != recipient) lastBuy[tx.origin] = block.number;

489 }

490 }

491

492

Shibarium DAO | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 488

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing.

Source File
- ShibariumDAO.sol

Locations

487 lastBuy[recipient] = block.number;

488 if (tx.origin != recipient) lastBuy[tx.origin] = block.number;

489 }

490 }

491

492

Shibarium DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 307

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibariumDAO.sol

Locations

306 if (

307 !liquidityPools[addresses[i]] && !liquidityCreator[addresses[i]]

308) {

309 _basicTransfer(

310 from,

311

Shibarium DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 307

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibariumDAO.sol

Locations

306 if (

307 !liquidityPools[addresses[i]] && !liquidityCreator[addresses[i]]

308) {

309 _basicTransfer(

310 from,

311

Shibarium DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 311

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibariumDAO.sol

Locations

310 from,

311 addresses[i],

312 amounts[i] * (10**_decimals)

313);

314 }

315

Shibarium DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 312

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibariumDAO.sol

Locations

311 addresses[i],

312 amounts[i] * (10**_decimals)

313);

314 }

315 }

316

Shibarium DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 530

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibariumDAO.sol

Locations

529 address[] memory path = new address[](2);

530 path[0] = address(this);

531 path[1] = router.WETH();

532

533 router.swapExactTokensForETHSupportingFeeOnTransferTokens(

534

Shibarium DAO | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 531

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ShibariumDAO.sol

Locations

530 path[0] = address(this);

531 path[1] = router.WETH();

532

533 router.swapExactTokensForETHSupportingFeeOnTransferTokens(

534 amountToSwap,

535

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 337

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

336 startBullRun = true;

337 launchedAt = block.number;

338 protectionTimer = block.timestamp + _protection;

339 protectionLimit = _limit * (10**_decimals);

340 }

341

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 424

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

423 function launch() internal {

424 launchedAt = block.number;

425 launchedTime = block.timestamp;

426 swapEnabled = true;

427 }

428

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 461

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

460 isTxLimitExempt[sender] ||

461 lastBuy[recipient] + rateLimit <= block.number,

462 "Transfer rate limit exceeded."

463);

464

465

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 472

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

471);

472 lastSell[sender] = block.number;

473 }

474

475 if (liquidityPools[recipient]) {

476

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 476

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

475 if (liquidityPools[recipient]) {

476 lastSell[sender] = block.number;

477 } else if (feeExcluded(sender)) {

478 if (

479 protectionEnabled &&

480

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 481

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

480 protectionTimer > block.timestamp &&

481 lastBuy[tx.origin] == block.number &&

482 protected[recipient] == 0

483) {

484 protected[recipient] = block.number;

485

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 484

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

483) {

484 protected[recipient] = block.number;

485 emit ProtectedWallet(tx.origin, recipient, block.number, 1);

486 }

487 lastBuy[recipient] = block.number;

488

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 485

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

484 protected[recipient] = block.number;

485 emit ProtectedWallet(tx.origin, recipient, block.number, 1);

486 }

487 lastBuy[recipient] = block.number;

488 if (tx.origin != recipient) lastBuy[tx.origin] = block.number;

489

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 487

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

486 }

487 lastBuy[recipient] = block.number;

488 if (tx.origin != recipient) lastBuy[tx.origin] = block.number;

489 }

490 }

491

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 488

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

487 lastBuy[recipient] = block.number;

488 if (tx.origin != recipient) lastBuy[tx.origin] = block.number;

489 }

490 }

491

492

Shibarium DAO | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 497

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- ShibariumDAO.sol

Locations

496 function getTotalFee(bool selling) public view returns (uint256) {

497 if (launchedAt + deadBlocks >= block.number) {

498 return feeDenominator;

499 }

500 if (selling) return totalFee + sellBias;

501

Shibarium DAO | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Shibarium DAO | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

