
PYROmatic

Smart Contract
Audit Report

29 Nov 2022

PYROmatic | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

PYROmatic | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

PYROmatic PYRO Ethereum

| Addresses

Contract address 0x1e2d230c7a7f4c679fb1378f1f51dedeae85cd72

Contract deployer address 0xA486120564D67599dEc94AdB84DF9dee98d76D26

| Project Website

https://www.pyrotokenerc.com/

| Codebase

https://etherscan.io/address/0x1e2d230c7a7f4c679fb1378f1f51dedeae85cd72#code

https://www.pyrotokenerc.com/
https://etherscan.io/address/0x1e2d230c7a7f4c679fb1378f1f51dedeae85cd72#code

PYROmatic | Security Analysis

SUMMARY

PYRO is a fast-burning hyper-deflationary token that gains value with every buy and sell. The burn in the PYRO
contract is a true burn function that removes tokens from the total supply with every buy and sell transaction.
In addition to this, the PYRO team has developed a proprietary burn bot for use by other projects and
developers who wish to utilize burn functions within their smart contracts allowing them to join the PYRO burn
bot ecosystem. PYRO's number one goal is to become the fastest burning token on the ERC20 blockchain and
the go-to utility provider for the PYRO burn bots and custom true burn contracts.

| Contract Summary

Documentation Quality

PYROmatic provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by PYROmatic with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 106, 160 and 172.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 123, 123, 167, 167, 168, 168, 293, 321, 361, 361, 392, 393, 402, 402, 402, 402, 403, 403, 407, 407,
407, 408, 408, 412, 412, 416, 416, 420, 420, 424, 424, 425, 425, 427, 427, 428, 429, 485, 499, 499, 560,
560, 561, 561, 578, 579, 579, 580, 580, 594, 596, 609, 622, 622, 623, 623, 624, 626, 633, 638, 638, 640 and
645.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 520, 521, 579, 580 and 580.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 446.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 557.

PYROmatic | Security Analysis

CONCLUSION

We have audited the PYROmatic project released on November 2022 to discover issues and identify potential
security vulnerabilities in PYROmatic Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the PYROmatic smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
tx.origin as a part of authorization control and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

PYROmatic | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

PYROmatic | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PYROmatic | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

PYROmatic | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Nov 28 2022 21:33:39 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Nov 29 2022 07:49:18 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File PYROmatic.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

122 uint8 constant private _decimals = 18;

123 uint256 private _tTotal = startingSupply * 10**_decimals;

124

125 struct Fees {

126 uint16 buyFee;

127

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

122 uint8 constant private _decimals = 18;

123 uint256 private _tTotal = startingSupply * 10**_decimals;

124

125 struct Fees {

126 uint16 buyFee;

127

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 167

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

166

167 uint256 private _maxTxAmount = (_tTotal * 2) / 100;

168 uint256 private _maxWalletSize = (_tTotal * 2) / 100;

169

170 bool public tradingEnabled = false;

171

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 167

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

166

167 uint256 private _maxTxAmount = (_tTotal * 2) / 100;

168 uint256 private _maxWalletSize = (_tTotal * 2) / 100;

169

170 bool public tradingEnabled = false;

171

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 168

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

167 uint256 private _maxTxAmount = (_tTotal * 2) / 100;

168 uint256 private _maxWalletSize = (_tTotal * 2) / 100;

169

170 bool public tradingEnabled = false;

171 bool public _hasLiqBeenAdded = false;

172

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 168

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

167 uint256 private _maxTxAmount = (_tTotal * 2) / 100;

168 uint256 private _maxWalletSize = (_tTotal * 2) / 100;

169

170 bool public tradingEnabled = false;

171 bool public _hasLiqBeenAdded = false;

172

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 293

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

292 if (_allowances[sender][msg.sender] != type(uint256).max) {

293 _allowances[sender][msg.sender] -= amount;

294 }

295

296 return _transfer(sender, recipient, amount);

297

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

320 if (timeSinceLastPair != 0) {

321 require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown.");

322 }

323 require(!lpPairs[pair], "Pair already added to list.");

324 lpPairs[pair] = true;

325

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 361

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

360 function getCirculatingSupply() public view returns (uint256) {

361 return (_tTotal - (balanceOf(DEAD) + balanceOf(address(0))));

362 }

363

364 function removeSniper(address account) external onlyOwner {

365

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 361

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

360 function getCirculatingSupply() public view returns (uint256) {

361 return (_tTotal - (balanceOf(DEAD) + balanceOf(address(0))));

362 }

363

364 function removeSniper(address account) external onlyOwner {

365

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 392

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

391 _ratios.totalSwap = marketing;

392 uint256 total = _taxRates.buyFee + _taxRates.sellFee;

393 require(_ratios.totalSwap + _ratios.burn <= total, "Cannot exceed sum of buy and

sell fees.");

394 }

395

396

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 393

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

392 uint256 total = _taxRates.buyFee + _taxRates.sellFee;

393 require(_ratios.totalSwap + _ratios.burn <= total, "Cannot exceed sum of buy and

sell fees.");

394 }

395

396 function setWallets(address payable marketing) external onlyOwner {

397

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

401 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

402 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

403 _maxTxAmount = (_tTotal * percent) / divisor;

404 }

405

406

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

401 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

402 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

403 _maxTxAmount = (_tTotal * percent) / divisor;

404 }

405

406

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

401 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

402 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

403 _maxTxAmount = (_tTotal * percent) / divisor;

404 }

405

406

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

401 function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {

402 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

403 _maxTxAmount = (_tTotal * percent) / divisor;

404 }

405

406

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

402 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

403 _maxTxAmount = (_tTotal * percent) / divisor;

404 }

405

406 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

407

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

402 require((_tTotal * percent) / divisor >= (_tTotal * 5 / 1000), "Max Transaction amt

must be above 0.5% of total supply.");

403 _maxTxAmount = (_tTotal * percent) / divisor;

404 }

405

406 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

407

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 407

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

406 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

407 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

408 _maxWalletSize = (_tTotal * percent) / divisor;

409 }

410

411

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 407

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

406 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

407 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

408 _maxWalletSize = (_tTotal * percent) / divisor;

409 }

410

411

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 407

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

406 function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {

407 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

408 _maxWalletSize = (_tTotal * percent) / divisor;

409 }

410

411

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 408

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

407 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

408 _maxWalletSize = (_tTotal * percent) / divisor;

409 }

410

411 function getMaxTX() external view returns (uint256) {

412

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 408

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

407 require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be

above 1% of total supply.");

408 _maxWalletSize = (_tTotal * percent) / divisor;

409 }

410

411 function getMaxTX() external view returns (uint256) {

412

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 412

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

411 function getMaxTX() external view returns (uint256) {

412 return _maxTxAmount / (10**_decimals);

413 }

414

415 function getMaxWallet() external view returns (uint256) {

416

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 412

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

411 function getMaxTX() external view returns (uint256) {

412 return _maxTxAmount / (10**_decimals);

413 }

414

415 function getMaxWallet() external view returns (uint256) {

416

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

415 function getMaxWallet() external view returns (uint256) {

416 return _maxWalletSize / (10**_decimals);

417 }

418

419 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

420

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

415 function getMaxWallet() external view returns (uint256) {

416 return _maxWalletSize / (10**_decimals);

417 }

418

419 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

420

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 420

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

419 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

420 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

421 }

422

423 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

424

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 420

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

419 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

420 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

421 }

422

423 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

424

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 424

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

423 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

424 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

425 swapAmount = (_tTotal * amountPercent) / amountDivisor;

426 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

427 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

428

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 424

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

423 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

424 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

425 swapAmount = (_tTotal * amountPercent) / amountDivisor;

426 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

427 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

428

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 425

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

424 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

425 swapAmount = (_tTotal * amountPercent) / amountDivisor;

426 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

427 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

428 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

429

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 425

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

424 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

425 swapAmount = (_tTotal * amountPercent) / amountDivisor;

426 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

427 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

428 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

429

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 427

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

426 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

427 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

428 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

429 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

430 }

431

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 427

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

426 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

427 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

428 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

429 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

430 }

431

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 428

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

427 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

428 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

429 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

430 }

431

432

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 429

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

428 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

429 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

430 }

431

432 function setPriceImpactSwapAmount(uint256 priceImpactSwapPercent) external

onlyOwner {

433

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 485

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

484 if (!_isExcludedFromLimits[to]) {

485 require(balanceOf(to) + amount <= _maxWalletSize, "Transfer amount exceeds the

maxWalletSize.");

486 }

487 }

488 }

489

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 499

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

498 uint256 swapAmt = swapAmount;

499 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

500 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

501 contractSwap(contractTokenBalance);

502 }

503

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 499

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

498 uint256 swapAmt = swapAmount;

499 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

500 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

501 contractSwap(contractTokenBalance);

502 }

503

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 560

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

559 allowedPresaleExclusion = false;

560 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

561 swapAmount = (balanceOf(lpPair) * 30) / 10000;

562 launchStamp = block.timestamp;

563 }

564

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 560

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

559 allowedPresaleExclusion = false;

560 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

561 swapAmount = (balanceOf(lpPair) * 30) / 10000;

562 launchStamp = block.timestamp;

563 }

564

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 561

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

560 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

561 swapAmount = (balanceOf(lpPair) * 30) / 10000;

562 launchStamp = block.timestamp;

563 }

564

565

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 561

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

560 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

561 swapAmount = (balanceOf(lpPair) * 30) / 10000;

562 launchStamp = block.timestamp;

563 }

564

565

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 578

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

577 require(accounts.length == amounts.length, "Lengths do not match.");

578 for (uint16 i = 0; i < accounts.length; i++) {

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 579

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

578 for (uint16 i = 0; i < accounts.length; i++) {

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582 }

583

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 579

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

578 for (uint16 i = 0; i < accounts.length; i++) {

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582 }

583

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 580

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582 }

583

584

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 580

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582 }

583

584

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 594

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

593 }

594 _tOwned[from] -= amount;

595 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

596 _tOwned[to] += amountReceived;

597 emit Transfer(from, to, amountReceived);

598

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 596

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

595 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

596 _tOwned[to] += amountReceived;

597 emit Transfer(from, to, amountReceived);

598 if (!_hasLiqBeenAdded) {

599 _checkLiquidityAdd(from, to);

600

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 609

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

608 Ratios memory ratios = _ratios;

609 uint256 total = _ratios.marketing + _ratios.burn;

610 uint256 currentFee;

611 if (buy) {

612 currentFee = _taxRates.buyFee;

613

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 622

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

621 || block.chainid == 56)) { currentFee = 4500; }

622 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

623 uint256 burnAmount = (feeAmount * ratios.burn) / total;

624 uint256 swapAmt = feeAmount - burnAmount;

625 if (swapAmt > 0) {

626

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 622

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

621 || block.chainid == 56)) { currentFee = 4500; }

622 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

623 uint256 burnAmount = (feeAmount * ratios.burn) / total;

624 uint256 swapAmt = feeAmount - burnAmount;

625 if (swapAmt > 0) {

626

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 623

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

622 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

623 uint256 burnAmount = (feeAmount * ratios.burn) / total;

624 uint256 swapAmt = feeAmount - burnAmount;

625 if (swapAmt > 0) {

626 _tOwned[address(this)] += swapAmt;

627

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 623

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

622 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

623 uint256 burnAmount = (feeAmount * ratios.burn) / total;

624 uint256 swapAmt = feeAmount - burnAmount;

625 if (swapAmt > 0) {

626 _tOwned[address(this)] += swapAmt;

627

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 624

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

623 uint256 burnAmount = (feeAmount * ratios.burn) / total;

624 uint256 swapAmt = feeAmount - burnAmount;

625 if (swapAmt > 0) {

626 _tOwned[address(this)] += swapAmt;

627 emit Transfer(from, address(this), swapAmt);

628

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 626

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

625 if (swapAmt > 0) {

626 _tOwned[address(this)] += swapAmt;

627 emit Transfer(from, address(this), swapAmt);

628 }

629 if (burnAmount > 0) {

630

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 633

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

632

633 return amount - feeAmount;

634 }

635

636 function burn(uint256 amountTokens) external {

637

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*=" DISCOVERED
LINE 638

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

637 address sender = msg.sender;

638 amountTokens *= 10**_decimals;

639 require(balanceOf(sender) >= amountTokens, "You do not have enough tokens.");

640 _tOwned[sender] -= amountTokens;

641 _burn(sender, amountTokens);

642

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 638

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

637 address sender = msg.sender;

638 amountTokens *= 10**_decimals;

639 require(balanceOf(sender) >= amountTokens, "You do not have enough tokens.");

640 _tOwned[sender] -= amountTokens;

641 _burn(sender, amountTokens);

642

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 640

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

639 require(balanceOf(sender) >= amountTokens, "You do not have enough tokens.");

640 _tOwned[sender] -= amountTokens;

641 _burn(sender, amountTokens);

642 }

643

644

PYROmatic | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- PYROmatic.sol

Locations

644 function _burn(address from, uint256 amount) internal {

645 _tTotal -= amount;

646 emit Transfer(from, address(0), amount);

647 }

648 }

649

PYROmatic | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.9.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- PYROmatic.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity >=0.6.0 <0.9.0;

7

8 interface IERC20 {

9 function totalSupply() external view returns (uint256);

10

PYROmatic | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 106

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private.

Source File
- PYROmatic.sol

Locations

105 mapping (address => uint256) private _tOwned;

106 mapping (address => bool) lpPairs;

107 uint256 private timeSinceLastPair = 0;

108 mapping (address => mapping (address => uint256)) private _allowances;

109 mapping (address => bool) private _liquidityHolders;

110

PYROmatic | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 160

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- PYROmatic.sol

Locations

159

160 bool inSwap;

161 bool public contractSwapEnabled = false;

162 uint256 public swapThreshold;

163 uint256 public swapAmount;

164

PYROmatic | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 172

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protections" is
internal. Other possible visibility settings are public and private.

Source File
- PYROmatic.sol

Locations

171 bool public _hasLiqBeenAdded = false;

172 Protections protections;

173 uint256 public launchStamp;

174

175 event ContractSwapEnabledUpdated(bool enabled);

176

PYROmatic | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 446

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- PYROmatic.sol

Locations

445 && to != _owner

446 && tx.origin != _owner

447 && !_liquidityHolders[to]

448 && !_liquidityHolders[from]

449 && to != DEAD

450

PYROmatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 520

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PYROmatic.sol

Locations

519 address[] memory path = new address[](2);

520 path[0] = address(this);

521 path[1] = dexRouter.WETH();

522

523 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

524

PYROmatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 521

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PYROmatic.sol

Locations

520 path[0] = address(this);

521 path[1] = dexRouter.WETH();

522

523 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

524 contractTokenBalance,

525

PYROmatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 579

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PYROmatic.sol

Locations

578 for (uint16 i = 0; i < accounts.length; i++) {

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582 }

583

PYROmatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 580

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PYROmatic.sol

Locations

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582 }

583

584

PYROmatic | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 580

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- PYROmatic.sol

Locations

579 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

580 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

581 }

582 }

583

584

PYROmatic | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 557

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- PYROmatic.sol

Locations

556 }

557 try protections.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp),

_decimals) {} catch {}

558 tradingEnabled = true;

559 allowedPresaleExclusion = false;

560 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

561

PYROmatic | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

PYROmatic | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

