
Quadrium

Smart Contract
Audit Report

16 Jan 2023

Quadrium | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Quadrium | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Quadrium QUAD Binance Smart Chain

| Addresses

Contract address 0x3913c87296CdE0222634a7732Ff5Cda77cCF386A

Contract deployer address 0x96b516815919977C75B095953c62c0B4F40fBe4F

| Project Website

https://quadriumcompany.com/

| Codebase

https://bscscan.com/address/0x3913c87296CdE0222634a7732Ff5Cda77cCF386A#code

https://quadriumcompany.com/
https://bscscan.com/address/0x3913c87296CdE0222634a7732Ff5Cda77cCF386A#code

Quadrium | Security Analysis

SUMMARY

Quadrium Foundation is a Singapore-India-Uzbekistan joint company operating in all areas of Blockchain and
Web 3.0. The company already has an official license to operate in the market of Uzbekistan!

| Contract Summary

Documentation Quality

Quadrium provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Quadrium with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on line 431.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 31, 43, 54, 55, 66, 78, 411, 412, 434, 564, 566, 625, 644, 650 and 566.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 565, 566, 626, 627, 628, 730 and 731.

Quadrium | Security Analysis

CONCLUSION

We have audited the Quadrium project released on January 2023 to discover issues and identify potential
security vulnerabilities in Quadrium Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the code on Quadrium smart contract do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a state variable visibility is not set and out of bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value.

Quadrium | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Quadrium | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Quadrium | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Jan 15 2023 06:42:32 GMT+0000 (Coordinated Universal Time)

Finished Monday Jan 16 2023 17:00:44 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Quadrium.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 31

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

30 function add(uint256 a, uint256 b) internal pure returns (uint256) {

31 uint256 c = a + b;

32 require(c >= a, "SafeMath: addition overflow");

33

34 return c;

35

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 43

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

42 require(b <= a, errorMessage);

43 uint256 c = a - b;

44

45 return c;

46 }

47

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 54

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

53

54 uint256 c = a * b;

55 require(c / a == b, "SafeMath: multiplication overflow");

56

57 return c;

58

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 55

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

54 uint256 c = a * b;

55 require(c / a == b, "SafeMath: multiplication overflow");

56

57 return c;

58 }

59

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 66

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

65 require(b > 0, errorMessage);

66 uint256 c = a / b;

67 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

68

69 return c;

70

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 78

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

77 require(b != 0, errorMessage);

78 return a % b;

79 }

80 }

81

82

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

410 uint256 private constant MAX = ~uint256(0);

411 uint256 private _tTotal = 10000000000 * 10**18;

412 uint256 private _rTotal = (MAX - (MAX % _tTotal));

413 uint256 private _tFeeTotal;

414

415

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 412

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

411 uint256 private _tTotal = 10000000000 * 10**18;

412 uint256 private _rTotal = (MAX - (MAX % _tTotal));

413 uint256 private _tFeeTotal;

414

415 string private _name = "Quadrium";

416

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 434

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

433

434 uint256 private numTokensSellToAddToLiquidity = 8000 * 10**18;

435

436 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

437 event SwapAndLiquifyEnabledUpdated(bool enabled);

438

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 564

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

563 require(_isExcluded[account], "Account is already excluded");

564 for (uint256 i = 0; i < _excluded.length; i++) {

565 if (_excluded[i] == account) {

566 _excluded[i] = _excluded[_excluded.length - 1];

567 _tOwned[account] = 0;

568

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 566

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

565 if (_excluded[i] == account) {

566 _excluded[i] = _excluded[_excluded.length - 1];

567 _tOwned[account] = 0;

568 _isExcluded[account] = false;

569 _excluded.pop();

570

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 625

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

624 uint256 tSupply = _tTotal;

625 for (uint256 i = 0; i < _excluded.length; i++) {

626 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

627 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

628 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

629

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 644

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

643 return _amount.mul(_RewardFee).div(

644 10**2

645);

646 }

647

648

Quadrium | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 650

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

649 return _amount.mul(_liquidityFee).div(

650 10**2

651);

652 }

653

654

Quadrium | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 566

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Quadrium.sol

Locations

565 if (_excluded[i] == account) {

566 _excluded[i] = _excluded[_excluded.length - 1];

567 _tOwned[account] = 0;

568 _isExcluded[account] = false;

569 _excluded.pop();

570

Quadrium | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 431

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- Quadrium.sol

Locations

430

431 bool inSwapAndLiquify;

432 bool public swapAndLiquifyEnabled = false;

433

434 uint256 private numTokensSellToAddToLiquidity = 8000 * 10**18;

435

Quadrium | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 565

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Quadrium.sol

Locations

564 for (uint256 i = 0; i < _excluded.length; i++) {

565 if (_excluded[i] == account) {

566 _excluded[i] = _excluded[_excluded.length - 1];

567 _tOwned[account] = 0;

568 _isExcluded[account] = false;

569

Quadrium | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 566

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Quadrium.sol

Locations

565 if (_excluded[i] == account) {

566 _excluded[i] = _excluded[_excluded.length - 1];

567 _tOwned[account] = 0;

568 _isExcluded[account] = false;

569 _excluded.pop();

570

Quadrium | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 626

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Quadrium.sol

Locations

625 for (uint256 i = 0; i < _excluded.length; i++) {

626 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

627 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

628 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

629 }

630

Quadrium | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 627

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Quadrium.sol

Locations

626 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

627 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

628 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

629 }

630 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

631

Quadrium | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 628

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Quadrium.sol

Locations

627 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

628 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

629 }

630 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

631 return (rSupply, tSupply);

632

Quadrium | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 730

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Quadrium.sol

Locations

729 address[] memory path = new address[](2);

730 path[0] = address(this);

731 path[1] = uniswapV2Router.WETH();

732

733 _approve(address(this), address(uniswapV2Router), tokenAmount);

734

Quadrium | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 731

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Quadrium.sol

Locations

730 path[0] = address(this);

731 path[1] = uniswapV2Router.WETH();

732

733 _approve(address(this), address(uniswapV2Router), tokenAmount);

734

735

Quadrium | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Quadrium | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

