
DFYN Token

Smart Contract
Audit Report

08 May 2021

DFYN Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

DFYN Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

DFYN Token DFYN Ethereum

| Addresses

Contract address 0x9695e0114e12C0d3A3636fAb5A18e6b737529023

Contract deployer address 0x899BfBA3FbD79B80D35e9Fb4dd594eFD8d76f283

| Project Website

https://www.dfyn.network/

| Codebase

https://etherscan.io/address/0x9695e0114e12C0d3A3636fAb5A18e6b737529023#code

https://www.dfyn.network/
https://etherscan.io/address/0x9695e0114e12C0d3A3636fAb5A18e6b737529023#code

DFYN Token | Security Analysis

SUMMARY

DFYN is a multi-chain automated market maker (AMM) decentralized exchange (DEX) focused on ultra-fast,
gasless swaps and cross-chain compatibility. DFYN raised $305,500 from Polkastarter on a public round and
$2.4 million in a private and seed round.

| Contract Summary

Documentation Quality

DFYN Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by DFYN Token with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 176, 208, 231, 232, 267, 303 and 759.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 44, 70, 149,
310, 617, 660, 729, 770, 825, 915, 1024 and 1095.

DFYN Token | Security Analysis

CONCLUSION

We have audited the DFYN Token project released on May 2021 to discover issues and identify potential
security vulnerabilities in DFYN Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the DFYN Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues and floating pragmas set on several lines. Specifying a fixed compiler version is
recommended to ensure that the bytecode produced does not vary between builds. This is especially important
if you rely on bytecode-level verification of the code.

DFYN Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DFYN Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

DFYN Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

DFYN Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday May 07 2021 09:36:50 GMT+0000 (Coordinated Universal Time)

Finished Saturday May 08 2021 10:26:36 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File DFYNToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

DFYN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 176

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DFYNToken.sol

Locations

175 function add(uint256 a, uint256 b) internal pure returns (uint256) {

176 uint256 c = a + b;

177 require(c >= a, "SafeMath: addition overflow");

178

179 return c;

180

DFYN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 208

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DFYNToken.sol

Locations

207 require(b <= a, errorMessage);

208 uint256 c = a - b;

209

210 return c;

211 }

212

DFYN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DFYNToken.sol

Locations

230

231 uint256 c = a * b;

232 require(c / a == b, "SafeMath: multiplication overflow");

233

234 return c;

235

DFYN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 232

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DFYNToken.sol

Locations

231 uint256 c = a * b;

232 require(c / a == b, "SafeMath: multiplication overflow");

233

234 return c;

235 }

236

DFYN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DFYNToken.sol

Locations

266 require(b > 0, errorMessage);

267 uint256 c = a / b;

268 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

269

270 return c;

271

DFYN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 303

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DFYNToken.sol

Locations

302 require(b != 0, errorMessage);

303 return a % b;

304 }

305 }

306

307

DFYN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 759

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DFYNToken.sol

Locations

758 // The {SafeMath} overflow check can be skipped here, see the comment at the top

759 counter._value += 1;

760 }

761

762 function decrement(Counter storage counter) internal {

763

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 44

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

43

44 pragma solidity >=0.6.0 <0.8.0;

45

46 /*

47 * @dev Provides information about the current execution context, including the

48

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 70

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

69

70 pragma solidity >=0.6.0 <0.8.0;

71

72 /**

73 * @dev Interface of the ERC20 standard as defined in the EIP.

74

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 149

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

148

149 pragma solidity >=0.6.0 <0.8.0;

150

151 /**

152 * @dev Wrappers over Solidity's arithmetic operations with added overflow

153

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 310

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

309

310 pragma solidity >=0.6.0 <0.8.0;

311

312

313

314

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 617

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

616

617 pragma solidity >=0.6.0 <0.8.0;

618

619

620

621

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 660

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

659

660 pragma solidity >=0.6.0 <0.8.0;

661

662 /**

663 * @dev Contract module which provides a basic access control mechanism, where

664

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 729

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

728

729 pragma solidity >=0.6.0 <0.8.0;

730

731

732 /**

733

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 770

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

769

770 pragma solidity ^0.6.0;

771

772 // A copy of https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/ecc66719bd7681ed4eb8bf406f89a7408569ba9b/contracts/drafts/IERC20Permit.sol

773

774

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 825

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

824

825 pragma solidity ^0.6.0;

826

827 // A copy of https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/ecc66719bd7681ed4eb8bf406f89a7408569ba9b/contracts/cryptography/ECDSA.sol

828

829

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 915

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

914

915 pragma solidity ^0.6.0;

916

917 // A copy of https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/ecc66719bd7681ed4eb8bf406f89a7408569ba9b/contracts/drafts/EIP712.sol

918

919

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1024

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

1023

1024 pragma solidity ^0.6.0;

1025

1026

1027

1028

DFYN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1095

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DFYNToken.sol

Locations

1094

1095 pragma solidity ^0.6.0;

1096

1097

1098

1099

DFYN Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

DFYN Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

