
ZombieTama

Smart Contract
Audit Report

04 Oct 2022

ZombieTama | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

ZombieTama | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

ZombieTama ZTama Ethereum

| Addresses

Contract address 0x28988C700e0Ed4D3AdCC8a4A48862251E3aFBA22

Contract deployer address 0x8BC03EEB17a8774917ab3dD2E3b345B30EFa339d

| Project Website

https://zombietama.com/

| Codebase

https://etherscan.io/address/0x28988C700e0Ed4D3AdCC8a4A48862251E3aFBA22#code

https://zombietama.com/
https://etherscan.io/address/0x28988C700e0Ed4D3AdCC8a4A48862251E3aFBA22#code

ZombieTama | Security Analysis

SUMMARY

A Community Driven project with the intention of enjoying the season and bringing back the old ways!! We will
use our teams experience and humanitarian nature to use this project to help develop and create something
that will befit our holders and community. Have faith in us and we will show our good will in time!!!

| Contract Summary

Documentation Quality

ZombieTama provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by ZombieTama with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 729.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 141, 173, 196, 197, 232, 268, 698, 698, 699, 699, 731, 731, 767, 874, 876, 898, 1159, 1254, 1276,
1276 and 876.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 25.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 875, 876, 876, 899, 1024, 1025, 1160, 1160, 1161 and 1162.

ZombieTama | Security Analysis

CONCLUSION

We have audited the ZombieTama project released on October 2022 to discover issues and identify potential
security vulnerabilities in ZombieTama Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the ZombieTama smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set and out of bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

ZombieTama | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

ZombieTama | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

ZombieTama | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

ZombieTama | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Oct 03 2022 10:26:49 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Oct 04 2022 20:23:04 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File ZombieTama.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 141

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

140 function add(uint256 a, uint256 b) internal pure returns (uint256) {

141 uint256 c = a + b;

142 require(c >= a, "SafeMath: addition overflow");

143

144 return c;

145

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 173

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

172 require(b <= a, errorMessage);

173 uint256 c = a - b;

174

175 return c;

176 }

177

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

195

196 uint256 c = a * b;

197 require(c / a == b, "SafeMath: multiplication overflow");

198

199 return c;

200

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 197

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

196 uint256 c = a * b;

197 require(c / a == b, "SafeMath: multiplication overflow");

198

199 return c;

200 }

201

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 232

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

231 require(b > 0, errorMessage);

232 uint256 c = a / b;

233 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

234

235 return c;

236

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 268

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

267 require(b != 0, errorMessage);

268 return a % b;

269 }

270 }

271

272

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 698

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

697 uint256 private constant MAX = ~uint256(0);

698 uint256 private _tTotal = 1000000000 * 10**9;

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

702

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 698

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

697 uint256 private constant MAX = ~uint256(0);

698 uint256 private _tTotal = 1000000000 * 10**9;

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

702

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 699

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

698 uint256 private _tTotal = 1000000000 * 10**9;

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

702 string private _name = "ZombieTama";

703

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 699

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

698 uint256 private _tTotal = 1000000000 * 10**9;

699 uint256 private _rTotal = (MAX - (MAX % _tTotal));

700 uint256 private _tFeeTotal;

701

702 string private _name = "ZombieTama";

703

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 731

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

730 bool public swapAndLiquifyEnabled = true;

731 uint256 private minTokensBeforeSwap = 1000000 * 10**9;

732

733 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

734 event SwapAndLiquifyEnabledUpdated(bool enabled);

735

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 731

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

730 bool public swapAndLiquifyEnabled = true;

731 uint256 private minTokensBeforeSwap = 1000000 * 10**9;

732

733 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

734 event SwapAndLiquifyEnabledUpdated(bool enabled);

735

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 767

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

766 // launch sell fee

767 launchSellFeeDeadline = now + 0 days;

768

769 emit Transfer(address(0), _msgSender(), _tTotal);

770 }

771

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 874

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

873 require(_isExcluded[account], "Account is already excluded");

874 for (uint256 i = 0; i < _excluded.length; i++) {

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 876

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 898

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

897 uint totalExcludedBal;

898 for (uint256 i = 0; i < _excluded.length; i++){

899 totalExcludedBal = balanceOf(_excluded[i]).add(totalExcludedBal);

900 }

901 uint256 rewards =

holdersBal.mul(_balance).div(_tTotal.sub(balanceOf(uniswapV2Pair)).sub(totalExcludedBal))

;

902

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

1158 uint256 tSupply = _tTotal;

1159 for (uint256 i = 0; i < _excluded.length; i++) {

1160 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1161 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1162 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1163

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1254

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

1253 require(devFee <= 100, "Maximum fee limit is 10 percent");

1254 require(devTax + marketingTax == devFee, "Dev + marketing must equal total fee");

1255 _devFee = devFee;

1256 _devTax = devTax;

1257 _marketingTax = marketingTax;

1258

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

1275 function setMinTokensBeforeSwap(uint256 minTokens) external onlyOwner {

1276 minTokensBeforeSwap = minTokens * 10**9;

1277 emit MinTokensBeforeSwapUpdated(minTokens);

1278 }

1279

1280

ZombieTama | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

1275 function setMinTokensBeforeSwap(uint256 minTokens) external onlyOwner {

1276 minTokensBeforeSwap = minTokens * 10**9;

1277 emit MinTokensBeforeSwapUpdated(minTokens);

1278 }

1279

1280

ZombieTama | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 876

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- ZombieTama.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

ZombieTama | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 25

low SEVERITY
The current pragma Solidity directive is ""^0.6.12"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- ZombieTama.sol

Locations

24

25 pragma solidity ^0.6.12;

26

27 abstract contract Context {

28 function _msgSender() internal view virtual returns (address payable) {

29

ZombieTama | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 729

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- ZombieTama.sol

Locations

728

729 bool inSwapAndLiquify;

730 bool public swapAndLiquifyEnabled = true;

731 uint256 private minTokensBeforeSwap = 1000000 * 10**9;

732

733

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 875

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

874 for (uint256 i = 0; i < _excluded.length; i++) {

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 876

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 876

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 899

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

898 for (uint256 i = 0; i < _excluded.length; i++){

899 totalExcludedBal = balanceOf(_excluded[i]).add(totalExcludedBal);

900 }

901 uint256 rewards =

holdersBal.mul(_balance).div(_tTotal.sub(balanceOf(uniswapV2Pair)).sub(totalExcludedBal))

;

902 return rewards;

903

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1024

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

1023 address[] memory path = new address[](2);

1024 path[0] = address(this);

1025 path[1] = uniswapV2Router.WETH();

1026

1027 _approve(address(this), address(uniswapV2Router), tokenAmount);

1028

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1025

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

1024 path[0] = address(this);

1025 path[1] = uniswapV2Router.WETH();

1026

1027 _approve(address(this), address(uniswapV2Router), tokenAmount);

1028

1029

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1160

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

1159 for (uint256 i = 0; i < _excluded.length; i++) {

1160 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1161 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1162 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1163 }

1164

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1160

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

1159 for (uint256 i = 0; i < _excluded.length; i++) {

1160 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1161 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1162 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1163 }

1164

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1161

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

1160 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

1161 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1162 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1163 }

1164 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1165

ZombieTama | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1162

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- ZombieTama.sol

Locations

1161 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1162 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1163 }

1164 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1165 return (rSupply, tSupply);

1166

ZombieTama | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

ZombieTama | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

