
WeSendit

Smart Contract
Audit Report

29 Oct 2022

WeSendit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

WeSendit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

WeSendit WSI Binance Smart Chain

| Addresses

Contract address 0x837a130aed114300bab4f9f1f4f500682f7efd48

Contract deployer address 0x7D48d8F61b1038C2B53D5d157766C92e69ba2Ea7

| Project Website

https://wesendit.io/

| Codebase

https://bscscan.com/address/0x837a130aed114300bab4f9f1f4f500682f7efd48#code

https://wesendit.io/
https://bscscan.com/address/0x837a130aed114300bab4f9f1f4f500682f7efd48#code

WeSendit | Security Analysis

SUMMARY

Since the launch of WeSendit.com in 2013, we have built a professional and efficient structure and analyzed –
and evaluated – comprehensive fundamental data from centralized and decentralized application areas. We
will develop our unique selling propositions and market them globally.

| Contract Summary

Documentation Quality

WeSendit provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by WeSendit with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 1062, 1063, 1067, 1068, 1068, 1069, 1084, 1094, 1094, 1097, 1097, 1097, 1454, 1455, 2223, 2224,
2236, 2247, 2310, 2377, 2377, 2654, 2668, 2706, 2711, 2714, 2721, 2752, 2794, 2882, 2882, 2939, 3160,
3183, 3216, 3218, 3239, 3240, 3265, 3267, 3316, 3396, 1454, 1455, 2654 and 2668.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 56, 760, 827,
919, 952, 980, 1009, 1040, 1119, 1368, 1739, 1805, 2953, 2983, 3368 and 3407.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1068, 1095, 1096, 1098, 1098, 1458, 1461, 1503, 2006, 2259, 2260,
2289, 2290, 2664, 2668, 2668, 2707, 2940, 2940, 3691, 3700 and 3710.

WeSendit | Security Analysis

CONCLUSION

We have audited the WeSendit project released on October 2022 to discover issues and identify potential
security vulnerabilities in WeSendit Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the WeSendit smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, and out-of-bounds array access which the index access expression
can cause an exception in case an invalid array index value is used. The current pragma Solidity directive is
""^0.8.0"". Specifying a fixed compiler version is recommended to ensure that the bytecode produced does not
vary between builds. This is especially important if you rely on bytecode-level verification of the code.

WeSendit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

WeSendit | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

WeSendit | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

WeSendit | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Oct 28 2022 12:50:09 GMT+0000 (Coordinated Universal Time)

Finished Saturday Oct 29 2022 22:54:19 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File WeSenditToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1062

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1061 while (temp != 0) {

1062 digits++;

1063 temp /= 10;

1064 }

1065 bytes memory buffer = new bytes(digits);

1066

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 1063

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1062 digits++;

1063 temp /= 10;

1064 }

1065 bytes memory buffer = new bytes(digits);

1066 while (value != 0) {

1067

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1067

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1066 while (value != 0) {

1067 digits -= 1;

1068 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1069 value /= 10;

1070 }

1071

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1068

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1067 digits -= 1;

1068 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1069 value /= 10;

1070 }

1071 return string(buffer);

1072

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1068

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1067 digits -= 1;

1068 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1069 value /= 10;

1070 }

1071 return string(buffer);

1072

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 1069

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1068 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1069 value /= 10;

1070 }

1071 return string(buffer);

1072 }

1073

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1084

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1083 while (temp != 0) {

1084 length++;

1085 temp >>= 8;

1086 }

1087 return toHexString(value, length);

1088

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1094

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1093 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

1094 bytes memory buffer = new bytes(2 * length + 2);

1095 buffer[0] = "0";

1096 buffer[1] = "x";

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1094

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1093 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

1094 bytes memory buffer = new bytes(2 * length + 2);

1095 buffer[0] = "0";

1096 buffer[1] = "x";

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1096 buffer[1] = "x";

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1099 value >>= 4;

1100 }

1101

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1096 buffer[1] = "x";

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1099 value >>= 4;

1100 }

1101

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1096 buffer[1] = "x";

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1099 value >>= 4;

1100 }

1101

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1454

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1453

1454 uint256 toDeleteIndex = valueIndex - 1;

1455 uint256 lastIndex = set._values.length - 1;

1456

1457 if (lastIndex != toDeleteIndex) {

1458

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1455

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1454 uint256 toDeleteIndex = valueIndex - 1;

1455 uint256 lastIndex = set._values.length - 1;

1456

1457 if (lastIndex != toDeleteIndex) {

1458 bytes32 lastValue = set._values[lastIndex];

1459

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2223

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2222 // split the contract balance into halves

2223 uint256 half = amount / 2;

2224 uint256 otherHalf = amount - half;

2225

2226 // capture the contract's current BNB balance.

2227

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2224

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2223 uint256 half = amount / 2;

2224 uint256 otherHalf = amount - half;

2225

2226 // capture the contract's current BNB balance.

2227 // this is so that we can capture exactly the amount of BNB that the

2228

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2236

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2235 // how much BNB did we just swap into?

2236 uint256 newBalance = address(this).balance - initialBalance;

2237

2238 // add liquidity to uniswap

2239 uint256 tokenLiquified = _addLiquidity(

2240

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2247

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2246

2247 return half + tokenLiquified;

2248 }

2249

2250 /**

2251

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2310

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2309 // how much BUSD did we just swap into?

2310 uint256 newBalance = IERC20(busdAddress()).balanceOf(destination) -

2311 initialBalance;

2312

2313 emit SwapTokenForBusd(

2314

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2377

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2376 // Calculate percentual amount of volume

2377 uint256 percentualAmount = (pancakePairTokenBalance *

2378 percentageVolume) / 100;

2379

2380 // Do not exceed swap or liquify amount from fee entry

2381

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2377

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2376 // Calculate percentual amount of volume

2377 uint256 percentualAmount = (pancakePairTokenBalance *

2378 percentageVolume) / 100;

2379

2380 // Do not exceed swap or liquify amount from fee entry

2381

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2654

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2653 // Return entry index

2654 return feeEntries.length - 1;

2655 }

2656

2657 function removeFee(uint256 index) external override onlyRole(ADMIN) {

2658

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2668

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2667 // Remove fee entry from array

2668 feeEntries[index] = feeEntries[feeEntries.length - 1];

2669 feeEntries.pop();

2670

2671 emit FeeRemoved(id, index);

2672

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2706

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2705

2706 for (uint256 i = 0; i < feeAmount; i++) {

2707 FeeEntry memory fee = feeEntries[i];

2708

2709 if (_isFeeEntryValid(fee) && _isFeeEntryMatching(fee, from, to)) {

2710

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2711

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2710 uint256 tFee = _calculateFee(amount, fee.percentage);

2711 uint256 tempPercentage = totalFeePercentage + fee.percentage;

2712

2713 if (tFee > 0 && tempPercentage <= txFeeLimit) {

2714 tFees = tFees + tFee;

2715

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2714

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2713 if (tFee > 0 && tempPercentage <= txFeeLimit) {

2714 tFees = tFees + tFee;

2715 totalFeePercentage = tempPercentage;

2716 _reflectFee(from, to, tFee, fee, bypassSwapAndLiquify);

2717 }

2718

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2721

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2720

2721 tTotal = amount - tFees;

2722 require(tTotal > 0, "DynamicFeeManager: invalid total amount");

2723

2724 return (tTotal, tFees);

2725

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2752

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2751);

2752 feeEntryAmounts[fee.id] = feeEntryAmounts[fee.id] + tFee;

2753 } else {

2754 require(

2755 IWeSenditToken(address(token())).transferFromNoFees(

2756

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2794

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2793 // Subtract amount of swapped token from fee entry amount

2794 feeEntryAmounts[fee.id] = feeEntryAmounts[fee.id] - tokenSwapped;

2795 }

2796

2797 // Check if callback should be called on destination

2798

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2882

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2881 {

2882 return (amount * percentage) / FEE_DIVIDER;

2883 }

2884

2885 /**

2886

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2882

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2881 {

2882 return (amount * percentage) / FEE_DIVIDER;

2883 }

2884

2885 /**

2886

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2939

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2938

2939 for (uint256 i = 0; i < addresses.length; i++) {

2940 require(_token.transfer(addresses[i], amounts[i]));

2941 }

2942

2943

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 3160

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3159 address owner = _msgSender();

3160 _approve(owner, spender, allowance(owner, spender) + addedValue);

3161 return true;

3162 }

3163

3164

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 3183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3182 unchecked {

3183 _approve(owner, spender, currentAllowance - subtractedValue);

3184 }

3185

3186 return true;

3187

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 3216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3215 unchecked {

3216 _balances[from] = fromBalance - amount;

3217 }

3218 _balances[to] += amount;

3219

3220

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 3218

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3217 }

3218 _balances[to] += amount;

3219

3220 emit Transfer(from, to, amount);

3221

3222

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 3239

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3238

3239 _totalSupply += amount;

3240 _balances[account] += amount;

3241 emit Transfer(address(0), account, amount);

3242

3243

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 3240

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3239 _totalSupply += amount;

3240 _balances[account] += amount;

3241 emit Transfer(address(0), account, amount);

3242

3243 _afterTokenTransfer(address(0), account, amount);

3244

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 3265

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3264 unchecked {

3265 _balances[account] = accountBalance - amount;

3266 }

3267 _totalSupply -= amount;

3268

3269

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 3267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3266 }

3267 _totalSupply -= amount;

3268

3269 emit Transfer(account, address(0), amount);

3270

3271

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 3316

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3315 unchecked {

3316 _approve(owner, spender, currentAllowance - amount);

3317 }

3318 }

3319 }

3320

WeSendit | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 3396

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

3395 function _mint(address account, uint256 amount) internal virtual override {

3396 require(ERC20.totalSupply() + amount <= cap(), "ERC20Capped: cap exceeded");

3397 super._mint(account, amount);

3398 }

3399 }

3400

WeSendit | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1454

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1453

1454 uint256 toDeleteIndex = valueIndex - 1;

1455 uint256 lastIndex = set._values.length - 1;

1456

1457 if (lastIndex != toDeleteIndex) {

1458

WeSendit | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1455

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

1454 uint256 toDeleteIndex = valueIndex - 1;

1455 uint256 lastIndex = set._values.length - 1;

1456

1457 if (lastIndex != toDeleteIndex) {

1458 bytes32 lastValue = set._values[lastIndex];

1459

WeSendit | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2654

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2653 // Return entry index

2654 return feeEntries.length - 1;

2655 }

2656

2657 function removeFee(uint256 index) external override onlyRole(ADMIN) {

2658

WeSendit | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2668

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- WeSenditToken.sol

Locations

2667 // Remove fee entry from array

2668 feeEntries[index] = feeEntries[feeEntries.length - 1];

2669 feeEntries.pop();

2670

2671 emit FeeRemoved(id, index);

2672

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 56

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

55

56 pragma solidity ^0.8.0;

57

58 /**

59 * @dev Interface of the ERC20 standard as defined in the EIP.

60

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 760

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

759

760 pragma solidity ^0.8.0;

761

762 /**

763 * @dev Contract module that helps prevent reentrant calls to a function.

764

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 827

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

826

827 pragma solidity ^0.8.0;

828

829 /**

830 * @dev External interface of AccessControl declared to support ERC165 detection.

831

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 919

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

918

919 pragma solidity ^0.8.0;

920

921 /**

922 * @dev External interface of AccessControlEnumerable declared to support ERC165

detection.

923

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 952

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

951

952 pragma solidity ^0.8.0;

953

954 /**

955 * @dev Provides information about the current execution context, including the

956

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 980

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

979

980 pragma solidity ^0.8.0;

981

982 /**

983 * @dev Interface of the ERC165 standard, as defined in the

984

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1009

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

1008

1009 pragma solidity ^0.8.0;

1010

1011 /**

1012 * @dev Implementation of the {IERC165} interface.

1013

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1040

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

1039

1040 pragma solidity ^0.8.0;

1041

1042 /**

1043 * @dev String operations.

1044

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1119

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

1118

1119 pragma solidity ^0.8.0;

1120

1121

1122

1123

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1368

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

1367

1368 pragma solidity ^0.8.0;

1369

1370 /**

1371 * @dev Library for managing

1372

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1739

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

1738

1739 pragma solidity ^0.8.0;

1740

1741

1742

1743

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1805

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

1804

1805 pragma solidity ^0.8.0;

1806

1807 /**

1808 * @dev Contract module which provides a basic access control mechanism, where

1809

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2953

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

2952

2953 pragma solidity ^0.8.0;

2954

2955 /**

2956 * @dev Interface for the optional metadata functions from the ERC20 standard.

2957

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2983

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

2982

2983 pragma solidity ^0.8.0;

2984

2985

2986

2987

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3368

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

3367

3368 pragma solidity ^0.8.0;

3369

3370 /**

3371 * @dev Extension of {ERC20} that adds a cap to the supply of tokens.

3372

WeSendit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 3407

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- WeSenditToken.sol

Locations

3406

3407 pragma solidity ^0.8.0;

3408

3409

3410 /**

3411

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1068

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1067 digits -= 1;

1068 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

1069 value /= 10;

1070 }

1071 return string(buffer);

1072

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1095

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1094 bytes memory buffer = new bytes(2 * length + 2);

1095 buffer[0] = "0";

1096 buffer[1] = "x";

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1099

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1096

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1095 buffer[0] = "0";

1096 buffer[1] = "x";

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1099 value >>= 4;

1100

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1098

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1099 value >>= 4;

1100 }

1101 require(value == 0, "Strings: hex length insufficient");

1102

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1098

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1097 for (uint256 i = 2 * length + 1; i > 1; --i) {

1098 buffer[i] = _HEX_SYMBOLS[value & 0xf];

1099 value >>= 4;

1100 }

1101 require(value == 0, "Strings: hex length insufficient");

1102

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1458

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1457 if (lastIndex != toDeleteIndex) {

1458 bytes32 lastValue = set._values[lastIndex];

1459

1460 // Move the last value to the index where the value to delete is

1461 set._values[toDeleteIndex] = lastValue;

1462

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1461

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1460 // Move the last value to the index where the value to delete is

1461 set._values[toDeleteIndex] = lastValue;

1462 // Update the index for the moved value

1463 set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex

1464 }

1465

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1503

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

1502 function _at(Set storage set, uint256 index) private view returns (bytes32) {

1503 return set._values[index];

1504 }

1505

1506 /**

1507

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2006

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2005 {

2006 return feeEntries[index];

2007 }

2008

2009 function getFeeAmount(bytes32 id)

2010

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2259

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2258 address[] memory path = new address[](2);

2259 path[0] = address(token());

2260 path[1] = pancakeRouter().WETH();

2261

2262 require(

2263

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2260

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2259 path[0] = address(token());

2260 path[1] = pancakeRouter().WETH();

2261

2262 require(

2263 token().approve(address(pancakeRouter()), amount),

2264

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2289

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2288 address[] memory path = new address[](2);

2289 path[0] = address(token());

2290 path[1] = busdAddress();

2291

2292 require(

2293

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2290

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2289 path[0] = address(token());

2290 path[1] = busdAddress();

2291

2292 require(

2293 token().approve(address(pancakeRouter()), amount),

2294

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2664

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2663 // Reset current amount for liquify or swap

2664 bytes32 id = feeEntries[index].id;

2665 feeEntryAmounts[id] = 0;

2666

2667 // Remove fee entry from array

2668

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2668

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2667 // Remove fee entry from array

2668 feeEntries[index] = feeEntries[feeEntries.length - 1];

2669 feeEntries.pop();

2670

2671 emit FeeRemoved(id, index);

2672

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2668

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2667 // Remove fee entry from array

2668 feeEntries[index] = feeEntries[feeEntries.length - 1];

2669 feeEntries.pop();

2670

2671 emit FeeRemoved(id, index);

2672

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2707

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2706 for (uint256 i = 0; i < feeAmount; i++) {

2707 FeeEntry memory fee = feeEntries[i];

2708

2709 if (_isFeeEntryValid(fee) && _isFeeEntryMatching(fee, from, to)) {

2710 uint256 tFee = _calculateFee(amount, fee.percentage);

2711

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2940

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2939 for (uint256 i = 0; i < addresses.length; i++) {

2940 require(_token.transfer(addresses[i], amounts[i]));

2941 }

2942

2943 return true;

2944

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2940

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

2939 for (uint256 i = 0; i < addresses.length; i++) {

2940 require(_token.transfer(addresses[i], amounts[i]));

2941 }

2942

2943 return true;

2944

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3691

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

3690) public {

3691 IERC20(path[0]).transferFrom(msg.sender, _pair, amountIn);

3692 }

3693

3694 function swapExactETHForTokensSupportingFeeOnTransferTokens(

3695

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3700

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

3699) public payable {

3700 MockPancakePair(_pair).swap(path[1], msg.sender, amountOutMin);

3701 }

3702

3703 function swapExactTokensForTokensSupportingFeeOnTransferTokens(

3704

WeSendit | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3710

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- WeSenditToken.sol

Locations

3709) public {

3710 IERC20(path[0]).transferFrom(msg.sender, _pair, amountIn);

3711 }

3712 }

3713

WeSendit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

WeSendit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

