
dYdX

Smart Contract
Audit Report

13 Jun 2021

dYdX | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

dYdX | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

dYdX DYDX Binance Smart Chain

| Addresses

Contract address 0x92d6c1e31e14520e676a687f0a93788b716beff5

Contract deployer address 0x301DF37d653b281AF83a1DDf4464eF21A622eC83

| Project Website

https://dydx.exchange/

| Codebase

https://etherscan.io/address/0x92d6c1e31e14520e676a687f0a93788b716beff5#code

https://dydx.exchange/
https://etherscan.io/address/0x92d6c1e31e14520e676a687f0a93788b716beff5#code

dYdX | Security Analysis

SUMMARY

dYdX is a leading decentralized exchange that currently supports perpetual trading. dYdX runs on smart
contracts on the Ethereum blockchain, and allows users to trade with no intermediaries.

| Contract Summary

Documentation Quality

dYdX provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by dYdX with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 140, 174, 196, 197, 235, 273, 1018, 1038, 1085, 1086, 1095, 1097, 1097, 1097, 1104, 1154, 1157,
1160, 1365, 1387, 1691, 1729, 1018, 1038, 1085, 1086, 1095, 1104, 1154 and 1157.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 344.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1367, 1370, 1371, 1389, 1392 and 1393.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 925, 1074,
1147 and 1566.

dYdX | Security Analysis

CONCLUSION

We have audited the dYdX project released on June 2021 to discover issues and identify potential security
vulnerabilities in dYdX Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the dYdX smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, the potential use of "block.number" as a source of randomness, a floating pragma is set, and
out-of-bounds array access which the index access expression can cause an exception in case of the use of an
invalid array index value.

dYdX | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

dYdX | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

dYdX | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

dYdX | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Jun 12 2021 22:26:03 GMT+0000 (Coordinated Universal Time)

Finished Sunday Jun 13 2021 00:58:35 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File DydxToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 140

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

139 function add(uint256 a, uint256 b) internal pure returns (uint256) {

140 uint256 c = a + b;

141 require(c >= a, 'SafeMath: addition overflow');

142

143 return c;

144

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 174

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

173 require(b <= a, errorMessage);

174 uint256 c = a - b;

175

176 return c;

177 }

178

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

195

196 uint256 c = a * b;

197 require(c / a == b, 'SafeMath: multiplication overflow');

198

199 return c;

200

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 197

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

196 uint256 c = a * b;

197 require(c / a == b, 'SafeMath: multiplication overflow');

198

199 return c;

200 }

201

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 235

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

234 require(b > 0, errorMessage);

235 uint256 c = a / b;

236 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

237

238 return c;

239

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 273

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

272 require(b != 0, errorMessage);

273 return a % b;

274 }

275 }

276

277

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1018

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1017 if (fromSnapshotsCount != 0) {

1018 previous = snapshots[from][fromSnapshotsCount - 1].value;

1019 } else {

1020 previous = balanceOf(from);

1021 }

1022

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1038

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1037 if (toSnapshotsCount != 0) {

1038 previous = snapshots[to][toSnapshotsCount - 1].value;

1039 } else {

1040 previous = balanceOf(to);

1041 }

1042

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1085

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1084 // First check most recent balance

1085 if (snapshots[user][snapshotsCount - 1].blockNumber <= blockNumber) {

1086 return snapshots[user][snapshotsCount - 1].value;

1087 }

1088

1089

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1086

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1085 if (snapshots[user][snapshotsCount - 1].blockNumber <= blockNumber) {

1086 return snapshots[user][snapshotsCount - 1].value;

1087 }

1088

1089 // Next check implicit zero balance

1090

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1095

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1094 uint256 lower = 0;

1095 uint256 upper = snapshotsCount - 1;

1096 while (upper > lower) {

1097 uint256 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1098 Snapshot memory snapshot = snapshots[user][center];

1099

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1096 while (upper > lower) {

1097 uint256 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1098 Snapshot memory snapshot = snapshots[user][center];

1099 if (snapshot.blockNumber == blockNumber) {

1100 return snapshot.value;

1101

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1096 while (upper > lower) {

1097 uint256 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1098 Snapshot memory snapshot = snapshots[user][center];

1099 if (snapshot.blockNumber == blockNumber) {

1100 return snapshot.value;

1101

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1096 while (upper > lower) {

1097 uint256 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1098 Snapshot memory snapshot = snapshots[user][center];

1099 if (snapshot.blockNumber == blockNumber) {

1100 return snapshot.value;

1101

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1103 } else {

1104 upper = center - 1;

1105 }

1106 }

1107 return snapshots[user][lower].value;

1108

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1154

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1153 ownerSnapshotsCount != 0 &&

1154 ownerSnapshots[ownerSnapshotsCount - 1].blockNumber == currentBlock

1155) {

1156 // Doing multiple operations in the same block

1157 ownerSnapshots[ownerSnapshotsCount - 1].value = newValue;

1158

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1157

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1156 // Doing multiple operations in the same block

1157 ownerSnapshots[ownerSnapshotsCount - 1].value = newValue;

1158 } else {

1159 ownerSnapshots[ownerSnapshotsCount] = Snapshot(currentBlock, newValue);

1160 snapshotsCounts[owner] = ownerSnapshotsCount + 1;

1161

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1160

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1159 ownerSnapshots[ownerSnapshotsCount] = Snapshot(currentBlock, newValue);

1160 snapshotsCounts[owner] = ownerSnapshotsCount + 1;

1161 }

1162 }

1163

1164

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1365

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1364 {

1365 for (uint256 i = 0; i < addressesToAdd.length; i++) {

1366 require(

1367 !_tokenTransferAllowlist[addressesToAdd[i]],

1368 'ADDRESS_EXISTS_IN_TRANSFER_ALLOWLIST'

1369

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1387

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1386 {

1387 for (uint256 i = 0; i < addressesToRemove.length; i++) {

1388 require(

1389 _tokenTransferAllowlist[addressesToRemove[i]],

1390 'ADDRESS_DOES_NOT_EXIST_IN_TRANSFER_ALLOWLIST'

1391

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1691

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1690 require(

1691 nonce == _nonces[signer]++,

1692 'INVALID_NONCE'

1693);

1694 require(

1695

dYdX | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1728 require(

1729 nonce == _nonces[signer]++,

1730 'INVALID_NONCE'

1731);

1732 require(

1733

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1018

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1017 if (fromSnapshotsCount != 0) {

1018 previous = snapshots[from][fromSnapshotsCount - 1].value;

1019 } else {

1020 previous = balanceOf(from);

1021 }

1022

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1038

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1037 if (toSnapshotsCount != 0) {

1038 previous = snapshots[to][toSnapshotsCount - 1].value;

1039 } else {

1040 previous = balanceOf(to);

1041 }

1042

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1085

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1084 // First check most recent balance

1085 if (snapshots[user][snapshotsCount - 1].blockNumber <= blockNumber) {

1086 return snapshots[user][snapshotsCount - 1].value;

1087 }

1088

1089

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1086

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1085 if (snapshots[user][snapshotsCount - 1].blockNumber <= blockNumber) {

1086 return snapshots[user][snapshotsCount - 1].value;

1087 }

1088

1089 // Next check implicit zero balance

1090

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1095

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1094 uint256 lower = 0;

1095 uint256 upper = snapshotsCount - 1;

1096 while (upper > lower) {

1097 uint256 center = upper - (upper - lower) / 2; // ceil, avoiding overflow

1098 Snapshot memory snapshot = snapshots[user][center];

1099

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1103 } else {

1104 upper = center - 1;

1105 }

1106 }

1107 return snapshots[user][lower].value;

1108

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1154

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1153 ownerSnapshotsCount != 0 &&

1154 ownerSnapshots[ownerSnapshotsCount - 1].blockNumber == currentBlock

1155) {

1156 // Doing multiple operations in the same block

1157 ownerSnapshots[ownerSnapshotsCount - 1].value = newValue;

1158

dYdX | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1157

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- DydxToken.sol

Locations

1156 // Doing multiple operations in the same block

1157 ownerSnapshots[ownerSnapshotsCount - 1].value = newValue;

1158 } else {

1159 ownerSnapshots[ownerSnapshotsCount] = Snapshot(currentBlock, newValue);

1160 snapshotsCounts[owner] = ownerSnapshotsCount + 1;

1161

dYdX | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 344

low SEVERITY
The current pragma Solidity directive is ""^0.7.5"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- DydxToken.sol

Locations

343

344 pragma solidity ^0.7.5;

345

346

347

348

dYdX | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1367

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- DydxToken.sol

Locations

1366 require(

1367 !_tokenTransferAllowlist[addressesToAdd[i]],

1368 'ADDRESS_EXISTS_IN_TRANSFER_ALLOWLIST'

1369);

1370 _tokenTransferAllowlist[addressesToAdd[i]] = true;

1371

dYdX | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1370

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- DydxToken.sol

Locations

1369);

1370 _tokenTransferAllowlist[addressesToAdd[i]] = true;

1371 emit TransferAllowlistUpdated(addressesToAdd[i], true);

1372 }

1373 }

1374

dYdX | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1371

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- DydxToken.sol

Locations

1370 _tokenTransferAllowlist[addressesToAdd[i]] = true;

1371 emit TransferAllowlistUpdated(addressesToAdd[i], true);

1372 }

1373 }

1374

1375

dYdX | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1389

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- DydxToken.sol

Locations

1388 require(

1389 _tokenTransferAllowlist[addressesToRemove[i]],

1390 'ADDRESS_DOES_NOT_EXIST_IN_TRANSFER_ALLOWLIST'

1391);

1392 _tokenTransferAllowlist[addressesToRemove[i]] = false;

1393

dYdX | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1392

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- DydxToken.sol

Locations

1391);

1392 _tokenTransferAllowlist[addressesToRemove[i]] = false;

1393 emit TransferAllowlistUpdated(addressesToRemove[i], false);

1394 }

1395 }

1396

dYdX | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1393

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- DydxToken.sol

Locations

1392 _tokenTransferAllowlist[addressesToRemove[i]] = false;

1393 emit TransferAllowlistUpdated(addressesToRemove[i], false);

1394 }

1395 }

1396

1397

dYdX | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 925

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- DydxToken.sol

Locations

924

925 return _searchByBlockNumber(snapshots, snapshotsCounts, user, block.number);

926 }

927

928 /**

929

dYdX | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1074

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- DydxToken.sol

Locations

1073 require(

1074 blockNumber <= block.number,

1075 'INVALID_BLOCK_NUMBER'

1076);

1077

1078

dYdX | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1147

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- DydxToken.sol

Locations

1146 {

1147 uint128 currentBlock = uint128(block.number);

1148

1149 uint256 ownerSnapshotsCount = snapshotsCounts[owner];

1150 mapping(uint256 => Snapshot) storage ownerSnapshots = snapshots[owner];

1151

dYdX | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1566

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- DydxToken.sol

Locations

1565 uint256 snapshotsCount = _totalSupplySnapshotsCount;

1566 uint128 currentBlock = uint128(block.number);

1567 uint128 newValue = uint128(totalSupply());

1568

1569 // Note: There is no special case for the total supply being updated multiple

times in the same

1570

dYdX | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

dYdX | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

