Tamadoge

Smart Contract
Audit Report

@ SYSFIXED 27 Jul 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Tamadoge | Security Analysis

@sﬁrmm Tamadoge | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain
Tamadoge TAMA Ethereum

| Addresses
Contract address 0x12b6893cE26Ea6341919FE289212ef77e51688c8
Contract deployer address 0Oxbf73ED48596565F1AbDbeb28fdf6a330930fe331

| Project Website

https://tamadoge.io/

| Codebase

https://etherscan.io/address/0x12b6893cE26Ea6341919FE289212ef77e51688c8#code

https://tamadoge.io/
https://etherscan.io/address/0x12b6893cE26Ea6341919FE289212ef77e51688c8#code

@ SYSFIXED Tamadoge | Security Analysis

SUMMARY

Tamadoge is the newest entry into the Doge ecosystem, and it's coming on the scene with a woof! Unlike the
predecessors, Tamadoge is coming out the gate barking, pushing the boundaries of the play-to-earn space in
order to provide a game that people will be climbing over each other to use.

| Contract Summary

Documentation Quality
Tamadoge provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

o Standard solidity basecode and rules are already followed by Tamadoge with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 251, 251, 252, 252, 253, 279, 288, 295, 308, 308, 309, 310,310, 311, 311, 311, 312, 314, 387, 398,
413, 433, 435, 443, 444, 454 and 456.

¢ SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10, 95, 125
and 152.

@ SYSFIXED Tamadoge | Security Analysis

CONCLUSION

We have audited the Tamadoge project released on July 2022 to discover issues and identify potential security
vulnerabilities in Tamadoge Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Tamadoge smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues and floating pragmas set on several lines. Specifying a fixed compiler version is
recommended to ensure that the bytecode produced does not vary between builds. This is especially important
if you rely on bytecode-level verification of the code.

@‘S\FSFHEU Tamadoge | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Tamadoge | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Tamadoge | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@sﬁrmm Tamadoge | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jul 26 2022 08:35:16 GMT+0000 (Coordinated Universal Time)
Finished Wednesday Jul 27 2022 02:02:10 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+="DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

@S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 251

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

250 uint8 private constant _decinmals = 18;

251 ui nt 256 public constant hardCap = 2_000_000_000 * (10**_decimals); //2 billion
252 ui nt 256 public constant mntHardCap = 1 400 000 000 * (10** decimals); //1.4
billion

253 ui nt 256 public constant | ockedSupply = hardCap - mintHardCap; //600 mllion
254 ui nt 256 public mintable = m ntHardCap;

255

@S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 251

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

250 uint8 private constant _decinmals = 18;

251 ui nt 256 public constant hardCap = 2_000_000_000 * (10**_decimals); //2 billion
252 ui nt 256 public constant mntHardCap = 1 400 000 000 * (10** decimals); //1.4
billion

253 ui nt 256 public constant | ockedSupply = hardCap - mintHardCap; //600 mllion
254 ui nt 256 public mintable = m ntHardCap;

255

@S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 252

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

251 ui nt 256 public constant hardCap = 2_000_000_000 * (10**_decimals); //2 billion
252 ui nt 256 public constant mi ntHardCap = 1_400_000_000 * (10**_decimals); //1.4
billion

253 ui nt 256 public constant | ockedSupply = hardCap - mintHardCap; //600 mllion
254 ui nt 256 public m ntable = m ntHar dCap;

255 ui nt 256 public | ocking start;

256

@S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 252

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

251 ui nt 256 public constant hardCap = 2_000_000_000 * (10**_decimals); //2 billion
252 ui nt 256 public constant mi ntHardCap = 1_400_000_000 * (10**_decimals); //1.4
billion

253 ui nt 256 public constant | ockedSupply = hardCap - mintHardCap; //600 mllion
254 ui nt 256 public m ntable = m ntHar dCap;

255 ui nt 256 public | ocking start;

256

£ SYSFIXED

Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED

LINE 253

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

Locations
252 Ui nt 256
billion
253 ui nt 256
254 ui nt 256
255 Ui nt 256
256 Ui nt 256
257

public

public
public
public
public

constant mintHardCap =

constant | ockedSupply

1_400_000_000 * (10** decimals); //1.4

= hardCap - m ntHardCap; //600 nmillion

m nt abl e = m nt Har dCap;

| ocki ng_start;
| ocki ng_end;

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 279

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

278 _synbol = synbol _;

279 m ntable -= _m nt Anount;
280 _mnt(owner(), _mntAmount);
281 | ocking_start = | ockingStartTine;

282 | ocki ng_end = | ocki ngEndTi ne;
283

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 288

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

287 requi re(amount > 0 &% anmount <= mntable, "Amount out of bounds");

288 m nt abl e -= anpunt;

289 ~mnt(owner(), anount);
290 }

291

292

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 295

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

294 if (amount > 0) {

295 m nt edLockedSupply += anmpunt;
296 ~mnt(owner(), anount);

297 } else {

298 revert("Nothing to mnt");
299

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 308

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

307) {

308 ui nt 256 ti nePassed = (bl ock.timestanp - |ocking start) *
309 (10** _deci mal s);

310 ui nt 256 total Lock = (I ockedSupply * tinePassed) /

311 ((locking_end - locking_start) * (10**_decimals));

312

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 308

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

307) {

308 ui nt 256 ti nePassed = (bl ock.timestanp - |ocking start) *
309 (10** _deci mal s);

310 ui nt 256 total Lock = (I ockedSupply * tinePassed) /

311 ((locking_end - locking_start) * (10**_decimals));

312

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 309

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

308 ui nt 256 ti nePassed = (bl ock.timestanp - |ocking start) *
309 (10**_deci mal s);

310 ui nt 256 total Lock = (I ockedSupply * tinmePassed) /

311 ((locking _end - locking start) * (10**_decimals));

312 final Amount = (total Lock - m ntedLockedSupply);

313

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 310

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

309 (10**_deci mal s);

310 ui nt 256 total Lock = (| ockedSupply * tinePassed) /
311 ((locking end - locking start) * (10** decinmals));
312 final Amount = (total Lock - m ntedLockedSupply);
313 } else {

314

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 310

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

309 (10**_deci mal s);

310 ui nt 256 total Lock = (| ockedSupply * tinePassed) /
311 ((locking end - locking start) * (10** decinmals));
312 final Amount = (total Lock - m ntedLockedSupply);
313 } else {

314

£ SYSFIXED

Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED

LINE 311

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

Locations
310
311 ((locking_end -
312 final Amount =
313 } else {
314 fi nal Amount =

315

ui nt 256 total Lock = (| ockedSupply * tinePassed) /
| ocking_start) * (10**_decimals));

(total Lock -

| ockedSupply -

m nt edLockedSuppl y) ;

m nt edLockedSuppl y;

£ SYSFIXED

Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED

LINE 311

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

Locations
310
311 ((locking_end -
312 final Amount =
313 } else {
314 fi nal Amount =

315

ui nt 256 total Lock = (| ockedSupply * tinePassed) /
| ocking_start) * (10**_decimals));

(total Lock -

| ockedSupply -

m nt edLockedSuppl y) ;

m nt edLockedSuppl y;

£ SYSFIXED

Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED

LINE 311

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

Locations
310
311 ((locking_end -
312 final Amount =
313 } else {
314 fi nal Amount =

315

ui nt 256 total Lock = (| ockedSupply * tinePassed) /
| ocking_start) * (10**_decimals));

(total Lock -

| ockedSupply -

m nt edLockedSuppl y) ;

m nt edLockedSuppl y;

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 312

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

311 ((locking_end - |locking_start) * (10**_decimals));
312 final Amount = (total Lock - m ntedLockedSupply);
313 } else {

314 final Amount = | ockedSupply - m ntedLockedSupply;
315 }

316

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 314

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

313 } else {
314 final Amount = | ockedSupply - m ntedLockedSupply;

315}
316}
317

318

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 387

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

386 unchecked {

387 _approve(sender, _nsgSender(), currentAllowance - anount);
388 }

389

390 return true;

391

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 398

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol
Locations
397 {
398 _approve(_nsgSender(), to, _allowances[_nsgSender()][to] + addedVal ue);
399 return true;
400 }
401
402

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 413

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

412 unchecked {

413 _approve(_nsgSender (), to, currentAl |l owance - subtractedVal ue);
414 }

415

416 return true;

417

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 433

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

432 unchecked {

433 _bal ances[sender] = senderBal ance - anount;
434 }

435 _bal ances[reci pient] += anount;

436

437

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 435

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol
Locations
434 }
435 _bal ances[recipient] += amount;
436
437 emt Transfer(sender, recipient, anount);
438 }
439

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 443

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

442

443 _total Supply += anount;

444 _bal ances[account] += anpunt;

445 emt Transfer(address(0), account, anount);
446 }

447

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 444

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

443 _total Supply += anount;

444 bal ances[account] += anount;

445 emt Transfer(address(0), account, anount);
446 }

447

448

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 454

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

453 unchecked {

454 _bal ances[account] = account Bal ance - ampunt;
455 }

456 _total Supply -= anount;

457

458

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 456

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol
Locations
455 }
456 _total Supply -= anount;
457
458 emt Transfer(account, address(0), anount);
459 }
460

@‘S\FSFHEU Tamadoge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol
Locations
9
10 pragme solidity ~0.8.0;
11
12 [**
13 * @lev Interface of the ERC20 standard as defined in the ElP.
14

@‘S\FSFHEU Tamadoge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 95

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

94

95 pragma solidity ~0.8.0;
96

97

98 [**

99

@‘S\FSFHEU Tamadoge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 125

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol
Locations
124
125 pragna solidity ~0.8.0;
126
127 [**

128 * @lev Provides information about the current execution context, including the
129

@‘S\FSFHEU Tamadoge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 152

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

151

152 pragma solidity ~0.8.0;
153

154

155 [**

156

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED Tamadoge | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

