
FunFair

Smart Contract
Audit Report

07 Jul 2017

FunFair | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

FunFair | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

FunFair FUN Ethereum

| Addresses

Contract address 0x419D0d8BdD9aF5e606Ae2232ed285Aff190E711b

Contract deployer address 0x50b26685BC788E164d940F0a73770F4B9196B052

| Project Website

https://funtoken.io/

| Codebase

https://etherscan.io/address/0x419D0d8BdD9aF5e606Ae2232ed285Aff190E711b#code

https://funtoken.io/
https://etherscan.io/address/0x419D0d8BdD9aF5e606Ae2232ed285Aff190E711b#code

FunFair | Security Analysis

SUMMARY

The FUNToken is an asset developed specifically for the online gambling and gaming industry. FUNToken
combines the qualities of the Ethereum blockchain with a cutting-edge tech stack, making FUN a powerful
resource for players, platforms, and developers alike.

| Contract Summary

Documentation Quality

FunFair provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by FunFair.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 229, 93 and 231.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 79,
168, 147, 158, 147, 168 and 158.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 147, 80, 168, 158, 93, 95, 141, 195, 115, 132, 96, 178, 59, 219, 229,
231, 163, 77, 111, 49, 203, 116, 32, 188, 107, 97, 183, 45, 123, 209, 179, 57, 153, 119, 145, 112, 79, 135,
166, 120, 126 and 156.
SWC-113 SWC-128 | It is recommended to implement the contract logic to handle failed calls and block
gas limit on lines 80, 168, 158 and 147.

FunFair | Security Analysis

CONCLUSION

We have audited the FunFair project released in June 2017 to find issues and identify potential security
vulnerabilities in the FunFair project. This process is used to find technical issues and security loopholes that
may be found in smart contracts.

The security audit report gave unsatisfactory results with the discovery of high-risk issues and several other
low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The high-risk,
medium, and low problems we found in the smart contract are the arithmetic operation can underflow, an
assertion violation was triggered, multiple calls are executed in the same transaction, a call to a user-supplied
address is executed, an assertion violation was triggered, multiple calls are executed in the same transaction.
We not recommended to take invest to this kind of risky smart contract.

FunFair | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

FunFair | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

ISSUE
FOUND

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

FunFair | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

FunFair | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jul 06 2017 05:32:46 GMT+0000 (Coordinated Universal Time)

Finished Friday Jul 07 2017 20:42:39 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 THE ARITHMETIC OPERATION CAN UNDERFLOW. high acknowledged

SWC-101 THE ARITHMETIC OPERATION CAN UNDERFLOW. high acknowledged

SWC-101 THE ARITHMETIC OPERATOR CAN OVERFLOW. high acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. medium acknowledged

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. medium acknowledged

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. medium acknowledged

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. medium acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-110 AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. low acknowledged

FunFair | Security Analysis

SWC-101 | THE ARITHMETIC OPERATION CAN UNDERFLOW.
LINE 229

high SEVERITY
It is possible to cause an arithmetic underflow. Prevent the underflow by constraining inputs using the require()
statement or use the OpenZeppelin SafeMath library for integer arithmetic operations. Refer to the transaction
trace generated for this issue to reproduce the underflow.

Source File
- Token.sol

Locations

228

229 string public motd;

230 event Motd(string message);

231 function setMotd(string _m) onlyOwner {

232 motd = _m;

233

FunFair | Security Analysis

SWC-101 | THE ARITHMETIC OPERATION CAN UNDERFLOW.
LINE 93

high SEVERITY
It is possible to cause an arithmetic underflow. Prevent the underflow by constraining inputs using the require()
statement or use the OpenZeppelin SafeMath library for integer arithmetic operations. Refer to the transaction
trace generated for this issue to reproduce the underflow.

Source File
- Token.sol

Locations

92

93 contract Token is Finalizable, TokenReceivable, SafeMath, EventDefinitions {

94

95 string public name = "FunFair";

96 uint8 public decimals = 8;

97

FunFair | Security Analysis

SWC-101 | THE ARITHMETIC OPERATOR CAN OVERFLOW.
LINE 231

high SEVERITY
It is possible to cause an integer overflow or underflow in the arithmetic operation.

Source File
- Token.sol

Locations

230 event Motd(string message);

231 function setMotd(string _m) onlyOwner {

232 motd = _m;

233 Motd(_m);

234 }

235

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 147

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

146

147 success = controller.approve(msg.sender, _spender, _value);

148 if (success) {

149 Approval(msg.sender, _spender, _value);

150 }

151

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 80

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

79 uint balance = token.balanceOf(this);

80 if (token.transfer(_to, balance)) {

81 logTokenTransfer(_token, _to, balance);

82 return true;

83 }

84

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 168

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

167 if (success) {

168 uint newval = controller.allowance(msg.sender, _spender);

169 Approval(msg.sender, _spender, newval);

170 }

171 }

172

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 158

medium SEVERITY
It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

157 if (success) {

158 uint newval = controller.allowance(msg.sender, _spender);

159 Approval(msg.sender, _spender, newval);

160 }

161 }

162

FunFair | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 80

medium SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they're part of your own codebase).

Source File
- Token.sol

Locations

79 uint balance = token.balanceOf(this);

80 if (token.transfer(_to, balance)) {

81 logTokenTransfer(_token, _to, balance);

82 return true;

83 }

84

FunFair | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 168

medium SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they're part of your own codebase).

Source File
- Token.sol

Locations

167 if (success) {

168 uint newval = controller.allowance(msg.sender, _spender);

169 Approval(msg.sender, _spender, newval);

170 }

171 }

172

FunFair | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 158

medium SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they're part of your own codebase).

Source File
- Token.sol

Locations

157 if (success) {

158 uint newval = controller.allowance(msg.sender, _spender);

159 Approval(msg.sender, _spender, newval);

160 }

161 }

162

FunFair | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 79

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- Token.sol

Locations

78 IToken token = IToken(_token);

79 uint balance = token.balanceOf(this);

80 if (token.transfer(_to, balance)) {

81 logTokenTransfer(_token, _to, balance);

82 return true;

83

FunFair | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 168

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- Token.sol

Locations

167 if (success) {

168 uint newval = controller.allowance(msg.sender, _spender);

169 Approval(msg.sender, _spender, newval);

170 }

171 }

172

FunFair | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL
LINE 147

low SEVERITY
The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues,
consider accessing the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy
lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- Token.sol

Locations

146

147 success = controller.approve(msg.sender, _spender, _value);

148 if (success) {

149 Approval(msg.sender, _spender, _value);

150 }

151

FunFair | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 158

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- Token.sol

Locations

157 if (success) {

158 uint newval = controller.allowance(msg.sender, _spender);

159 Approval(msg.sender, _spender, newval);

160 }

161 }

162

FunFair | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL
LINE 147

low SEVERITY
The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues,
consider accessing the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy
lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- Token.sol

Locations

146

147 success = controller.approve(msg.sender, _spender, _value);

148 if (success) {

149 Approval(msg.sender, _spender, _value);

150 }

151

FunFair | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL
LINE 168

low SEVERITY
The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues,
consider accessing the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy
lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- Token.sol

Locations

167 if (success) {

168 uint newval = controller.allowance(msg.sender, _spender);

169 Approval(msg.sender, _spender, newval);

170 }

171 }

172

FunFair | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL
LINE 158

low SEVERITY
The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues,
consider accessing the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy
lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- Token.sol

Locations

157 if (success) {

158 uint newval = controller.allowance(msg.sender, _spender);

159 Approval(msg.sender, _spender, newval);

160 }

161 }

162

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 93

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

92

93 contract Token is Finalizable, TokenReceivable, SafeMath, EventDefinitions {

94

95 string public name = "FunFair";

96 uint8 public decimals = 8;

97

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 95

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

94

95 string public name = "FunFair";

96 uint8 public decimals = 8;

97 string public symbol = "FUN";

98

99

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 141

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

140

141 function approve(address _spender, uint _value)

142 onlyPayloadSize(2)

143 returns (bool success) {

144 //promote safe user behavior

145

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 195

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

194

195 bool public multilocked;

196

197 modifier notMultilocked {

198 assert(!multilocked);

199

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 115

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

114

115 function totalSupply() constant returns (uint) {

116 return controller.totalSupply();

117 }

118

119

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 132

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

131

132 function transferFrom(address _from, address _to, uint _value)

133 onlyPayloadSize(3)

134 returns (bool success) {

135 success = controller.transferFrom(msg.sender, _from, _to, _value);

136

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 96

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

95 string public name = "FunFair";

96 uint8 public decimals = 8;

97 string public symbol = "FUN";

98

99 Controller controller;

100

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 178

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

177

178 function burn(uint _amount) {

179 controller.burn(msg.sender, _amount);

180 Transfer(msg.sender, 0x0, _amount);

181 }

182

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 59

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

58

59 function finalize() onlyOwner {

60 finalized = true;

61 }

62

63

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 219

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

218

219 function multiApprove(uint[] bits) onlyOwner notMultilocked {

220 if (bits.length % 3 != 0) throw;

221 for (uint i=0; i<bits.length; i += 3) {

222 address owner = address(bits[i]);

223

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 229

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

228

229 string public motd;

230 event Motd(string message);

231 function setMotd(string _m) onlyOwner {

232 motd = _m;

233

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 231

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

230 event Motd(string message);

231 function setMotd(string _m) onlyOwner {

232 motd = _m;

233 Motd(_m);

234 }

235

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 163

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

162

163 function decreaseApproval (address _spender, uint _subtractedValue)

164 onlyPayloadSize(2)

165 returns (bool success) {

166 success = controller.decreaseApproval(msg.sender, _spender, _subtractedValue);

167

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 77

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

76

77 function claimTokens(address _token, address _to) onlyOwner returns (bool) {

78 IToken token = IToken(_token);

79 uint balance = token.balanceOf(this);

80 if (token.transfer(_to, balance)) {

81

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 111

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

110

111 function balanceOf(address a) constant returns (uint) {

112 return controller.balanceOf(a);

113 }

114

115

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 49

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

48

49 function acceptOwnership() {

50 if (msg.sender == newOwner) {

51 owner = newOwner;

52 }

53

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 203

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

202 //do we want lock permanent? I think so.

203 function lockMultis() onlyOwner {

204 multilocked = true;

205 }

206

207

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 116

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

115 function totalSupply() constant returns (uint) {

116 return controller.totalSupply();

117 }

118

119 function allowance(address _owner, address _spender) constant returns (uint) {

120

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 32

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

31 contract Owned {

32 address public owner;

33

34 function Owned() {

35 owner = msg.sender;

36

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 188

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

187

188 function controllerApprove(address _owner, address _spender, uint _value)

189 onlyController {

190 Approval(_owner, _spender, _value);

191 }

192

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 107

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

106

107 function setController(address _c) onlyOwner notFinalized {

108 controller = Controller(_c);

109 }

110

111

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 97

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

96 uint8 public decimals = 8;

97 string public symbol = "FUN";

98

99 Controller controller;

100 address owner;

101

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 183

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

182

183 function controllerTransfer(address _from, address _to, uint _value)

184 onlyController {

185 Transfer(_from, _to, _value);

186 }

187

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 45

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

44

45 function changeOwner(address _newOwner) onlyOwner {

46 newOwner = _newOwner;

47 }

48

49

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 123

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

122

123 function transfer(address _to, uint _value)

124 onlyPayloadSize(2)

125 returns (bool success) {

126 success = controller.transfer(msg.sender, _to, _value);

127

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 209

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

208

209 function multiTransfer(uint[] bits) onlyOwner notMultilocked {

210 if (bits.length % 3 != 0) throw;

211 for (uint i=0; i<bits.length; i += 3) {

212 address from = address(bits[i]);

213

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 179

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

178 function burn(uint _amount) {

179 controller.burn(msg.sender, _amount);

180 Transfer(msg.sender, 0x0, _amount);

181 }

182

183

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 57

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

56 contract Finalizable is Owned {

57 bool public finalized;

58

59 function finalize() onlyOwner {

60 finalized = true;

61

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 153

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

152

153 function increaseApproval (address _spender, uint _addedValue)

154 onlyPayloadSize(2)

155 returns (bool success) {

156 success = controller.increaseApproval(msg.sender, _spender, _addedValue);

157

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 119

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

118

119 function allowance(address _owner, address _spender) constant returns (uint) {

120 return controller.allowance(_owner, _spender);

121 }

122

123

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 145

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

144 //promote safe user behavior

145 if (controller.allowance(msg.sender, _spender) > 0) throw;

146

147 success = controller.approve(msg.sender, _spender, _value);

148 if (success) {

149

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 112

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

111 function balanceOf(address a) constant returns (uint) {

112 return controller.balanceOf(a);

113 }

114

115 function totalSupply() constant returns (uint) {

116

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 79

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

78 IToken token = IToken(_token);

79 uint balance = token.balanceOf(this);

80 if (token.transfer(_to, balance)) {

81 logTokenTransfer(_token, _to, balance);

82 return true;

83

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 135

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

134 returns (bool success) {

135 success = controller.transferFrom(msg.sender, _from, _to, _value);

136 if (success) {

137 Transfer(_from, _to, _value);

138 }

139

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 166

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

165 returns (bool success) {

166 success = controller.decreaseApproval(msg.sender, _spender, _subtractedValue);

167 if (success) {

168 uint newval = controller.allowance(msg.sender, _spender);

169 Approval(msg.sender, _spender, newval);

170

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 120

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

119 function allowance(address _owner, address _spender) constant returns (uint) {

120 return controller.allowance(_owner, _spender);

121 }

122

123 function transfer(address _to, uint _value)

124

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 126

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

125 returns (bool success) {

126 success = controller.transfer(msg.sender, _to, _value);

127 if (success) {

128 Transfer(msg.sender, _to, _value);

129 }

130

FunFair | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 156

low SEVERITY
It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- Token.sol

Locations

155 returns (bool success) {

156 success = controller.increaseApproval(msg.sender, _spender, _addedValue);

157 if (success) {

158 uint newval = controller.allowance(msg.sender, _spender);

159 Approval(msg.sender, _spender, newval);

160

FunFair | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 147

low SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they’re part of your own codebase).

Source File
- Token.sol

Locations

146

147 success = controller.approve(msg.sender, _spender, _value);

148 if (success) {

149 Approval(msg.sender, _spender, _value);

150 }

151

FunFair | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

FunFair | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

