StarterCoin

Smart Contract
Audit Report

@ SYSFIXED 06 Jan 2018

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

StarterCoin | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

StarterCoin | Security Analysis

Project name Token ticker Blockchain
StarterCoin STAC Ethereum
| Addresses

Contract address

0x9a005c9a89bd72a4bd27721e7a09a3c11d2b03c4

Contract deployer address

0x1B4Db82b23e50391D4380B780eCD405E4885d299

| Project Website

https://coinstarter.com/

| Codebase

https://etherscan.io/address/0x9a005¢c9a89bd72a4bd27721e7a09a3c11d2b03c4#code

https://coinstarter.com/
https://etherscan.io/address/0x9a005c9a89bd72a4bd27721e7a09a3c11d2b03c4#code

@ SYSFIXED StarterCoin | Security Analysis

SUMMARY

CoinStarter is an ecosystem for social engagement, news, and information and a fantasy crypto trading
platform.

| Contract Summary

Documentation Quality
StarterCoin provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by StarterCoin with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 58, 212, 219, 279, 126 and
156.

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 28 and 22.

SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 8, 14, 21, 26,
35,41,118, 148, 202 and 284.

SWC-116 | It is recommended to use oracles for block values as a proxy for time on lines 286 and 286.

@ SYSFIXED StarterCoin | Security Analysis

CONCLUSION

We have audited the StarterCoin project released in January 2018 to discover issues and identify potential
security vulnerabilities in StarterCoin Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the StarterCoin smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are function visibility
is not set (prior to Solidity 0.5.0), a floating pragma is set, a state variable visibility is not set, use of the
“constant” state mutability modifier is deprecated, a control flow decision is made based on The
block.timestamp environment variable and out of bounds array access which the index access expression can
cause an exception in case of the use of an invalid array index value.

@‘S\FSFHEU StarterCoin | Security Analysis

AUDIT RESULT

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 L i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
: SWC-106) PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o) ISSUE
. SWC-111 Deprecated built-in functions should never be used.
Functions FOUND
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

StarterCoin | Security Analysis

Execution of the code should never be blocked by a
specific contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only
once during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

ISSUE
FOUND

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

StarterCoin | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@sﬁrmm StarterCoin | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Jan 05 2018 14:33:08 GMT+0000 (Coordinated Universal Time)
Finished Saturday Jan 06 2018 23:28:07 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File StarterCoin.sol

| Detected Issues

ID Title Severity | Status

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged
SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

£ SYSFIXED

USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.
A CONTROL FLOW DECISION IS MADE BASED ON THE

SWC-116 low | acknowledged
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
A CONTROL FLOW DECISION IS MADE BASED ON THE

SWC-116 low | acknowledged
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

@‘S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 58

low SEVERITY

The function definition of "Ownable" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- StarterCoin.sol

Locations

57 */

58 function Omabl e() {
59 owner = nsg. sender;
60 }

61

62

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 212

low SEVERITY
The function definition of "increaseApproval" lacks a visibility specifier. Note that the compiler assumes

"public” visibility by default. Function visibility should always be specified explicitly to assure correctness of the

code and improve readability.

Source File
- StarterCoin.sol

Locations
211 */
212 function increaseApproval (address _spender, uint _addedVal ue)
213 returns (bool success) {
214 al | oned[nsg. sender] [_spender] = all owed[nsg. sender][_spender]. add(_addedVal ue) ;
215 Approval (nmsg. sender, _spender, allowed[nsg.sender][_spender]);

216

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO
SOLIDITY 0.5.0)

LINE 219

low SEVERITY

The function definition of "decreaseApproval" lacks a visibility specifier. Note that the compiler assumes
"public” visibility by default. Function visibility should always be specified explicitly to assure correctness of the
code and improve readability.

Source File
- StarterCoin.sol

Locations
218
219 function decreaseApproval (address _spender, uint _subtractedVal ue)
220 returns (bool success) {
221 uint ol dval ue = al |l owed[nsg. sender] [_spender];
222 if (_subtractedVal ue > ol dval ue) {

223

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 279

low SEVERITY

The function definition of "StarterCoin" lacks a visibility specifier. Note that the compiler assumes "public”
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- StarterCoin.sol

Locations

278

279 function StarterCoi n(uint256 _endTi nel CO, address _bountyWallet) {
280 endTi nel CO = _endTi nel CQ,

281 bount yWal | et = _bountyWall et;

282 }

283

@‘S\FSFHEU StarterCoin | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY

The current pragma Solidity directive is ""*0.4.13"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- StarterCoin.sol

Locations

pragma solidity ~0.4.13;

library SafeMath {
function mul (uint 256 a, uint256 b) internal constant returns (uint256) {

© 00N O O b

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 126

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal.
Other possible visibility settings are public and private.

Source File
- StarterCoin.sol

Locations
125
126 nmappi ng(address => ui nt 256) bal ances;
127
128 [**
129 * @lev transfer token for a specified address
130

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 156

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "allowed" is internal.
Other possible visibility settings are public and private.

Source File
- StarterCoin.sol

Locations

155

156 mappi ng (address => mappi ng (address => ui nt256)) all owed;
157

158

159 [/ **

160

@‘S\FSFHEU StarterCoin | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 28

low SEVERITY

It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- StarterCoin.sol

Locations

27 uint256 ¢ = a + b;
28 assert(c >= a);
29 return c;

30 }

31 }

32

@‘S\FSFHEU StarterCoin | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 22

low SEVERITY

It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- StarterCoin.sol

Locations

21 function sub(uint256 a, uint256 b) internal constant returns (uint256) {
22 assert(b <= a);

23 return a - b;

24}

25

26

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 8

low SEVERITY

Using "constant" as a state mutability modifier in function "mul” is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- StarterCoin.sol

Locations

7 library SafeMath {

8 function nul (uint256 a, uint256 b) internal constant returns (uint256) {
9 uint256 ¢ = a * b;

10 assert(a =0]| ¢/ a == b);

11 return c;

12

@‘S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 14

low SEVERITY

Using "constant" as a state mutability modifier in function "div" is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- StarterCoin.sol

Locations

13

14 function div(uint256 a, uint256 b) internal constant returns (uint256) {

15 /1 assert(b > 0); // Solidity automatically throws when dividing by 0

16 uint256 ¢ = a / b;

17 /] assert(a == b * ¢ +a %b); // There is no case in which this doesn't hold
18

@ SYSFIXED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 21

low SEVERITY

Using "constant" as a state mutability modifier in function "sub” is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- StarterCoin.sol

Locations

20

21 function sub(uint256 a, uint256 b) internal constant returns (uint256) {
22 assert (b <= a);

23 return a - b;

24}

25

@ SYSFIXED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 26

low SEVERITY

Using "constant" as a state mutability modifier in function "add" is disallowed as of Solidity version 0.5.0. Use
"view" instead.

Source File
- StarterCoin.sol

Locations

25

26 function add(uint256 a, uint256 b) internal constant returns (uint256) {
27 uint256 ¢ = a + b;

28 assert(c >= a);

29 return c;

30

@‘S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.

LINE 35

low SEVERITY
Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.

Use "view" instead.

Source File
- StarterCoin.sol

Locations
34 ui nt 256 public total Supply;
35 function bal anceO (address who) public constant returns (uint256);
36 function transfer(address to, uint256 value) public returns (bool);
37 event Transfer(address indexed from address indexed to, uint256 value);
38 }

39

@‘S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 41

low SEVERITY
Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- StarterCoin.sol

Locations

40 contract ERC20 is ERC20Basic {

41 function all owance(address owner, address spender) public constant returns
(ui nt 256) ;

42 function transferFron(address from address to, uint256 value) public returns
(bool);

43 function approve(address spender, uint256 value) public returns (bool);

44 event Approval (address indexed owner, address indexed spender, uint256 value);
45

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 118

low SEVERITY
Using "constant" as a state mutability modifier in function "transferableTokens" is disallowed as of Solidity
version 0.5.0. Use "view" instead.

Source File
- StarterCoin.sol

Locations
117 */
118 function transferabl eTokens(address hol der, uint64 tine) public constant returns
(uint256) {
119 return bal anceO (hol der);
120 }
121}
122

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 148

low SEVERITY

Using "constant" as a state mutability modifier in function "balanceOf" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- StarterCoin.sol

Locations

147 */

148 function bal anceO (address _owner) public constant returns (uint256 bal ance) {
149 return bal ances[_owner];

150 }

151

152

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 202

low SEVERITY

Using "constant" as a state mutability modifier in function "allowance" is disallowed as of Solidity version 0.5.0.
Use "view" instead.

Source File
- StarterCoin.sol

Locations

201 */

202 function all owance(address _owner, address _spender) public constant returns
(uint256 renmining) {

203 return all owed[_owner][_spender];

204 1}

205

206

@‘S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY

MODIFIER IS DEPRECATED.
LINE 284

low SEVERITY
Using "constant" as a state mutability modifier in function "transferableTokens" is disallowed as of Solidity
version 0.5.0. Use "view" instead.

Source File
- StarterCoin.sol

Locations

283

284 function transferabl eTokens(address hol der, uint64 tine) public constant returns
(uint256) {

285 // allow transfers after the end of |1CO

286 return (tine > endTinmel CO) || (holder == bountyWallet) ? balanceCO (hol der) : 0;
287 }

288

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-116 | ACONTROL FLOW DECISION IS MADE BASED ON

THE BLOCK. TIMESTAMP ENVIRONMENT VARIABLE.
LINE 286

low SEVERITY

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- StarterCoin.sol

Locations

285 /1 allow transfers after the end of |CO
286 return (tine > endTinmel CO) || (holder == bountyWallet) ? balanceC (holder) : O0;

287 }
288
289 }

290

@S‘I"‘SH}I{ED StarterCoin | Security Analysis

SWC-116 | ACONTROL FLOW DECISION IS MADE BASED ON

THE BLOCK. TIMESTAMP ENVIRONMENT VARIABLE.
LINE 286

low SEVERITY

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- StarterCoin.sol

Locations

285 /1 allow transfers after the end of |CO
286 return (tine > endTinmel CO) || (holder == bountyWallet) ? balanceC (holder) : O0;

287 }
288
289 }

290

@‘S‘I"‘SH}I{ED StarterCoin | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S‘I"‘SH}I{ED StarterCoin | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

