Function X

Smart Contract
Audit Report

@ SYSFIXED 29 Dec 2018

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Function X | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Function X | Security Analysis

Project name Token ticker Blockchain
Function X FX Ethereum
| Addresses

Contract address

0x8c15ef5b4b21951d50e53e4fbda8298ffad25057

Contract deployer address

0x609b16€2952e32A580b2D77Dc2C53117d0De6185

| Project Website

https://functionx.io/

| Codebase

https://etherscan.io/address/0x8c15ef5b4b21951d50e53e4fbda8298ffad25057#code

https://functionx.io/
https://etherscan.io/address/0x8c15ef5b4b21951d50e53e4fbda8298ffad25057#code

@ SYSFIXED Function X | Security Analysis

SUMMARY

Function X is mirroring traditional financial products on the Function X network and creating decentralized
financial products and a decentralized trading system. It is a highly customizable and expandable multi-chain
architecture blockchain network (subnets) that can meet different business needs.

| Contract Summary

Documentation Quality
Function X provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

o Standard solidity basecode and rules are already followed by Function X with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 328, 352, 364, 398, 410, 94
and 362.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.

SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 411
and 405.

SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 32, 411 and 405.

SWC-111 | It is recommended to use alternatives to the deprecated constructions on lines 368.

@ SYSFIXED Function X | Security Analysis

CONCLUSION

We have audited the Function X project released on December 2018 to discover issues and identify potential
security vulnerabilities in Function X Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Function X smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are a floating
pragma is set, a call to a user-supplied address is executed, a state variable visibility is not set, an assertion
violation is triggered, the "constant" state mutability modifier is now deprecated, and a requirement was
violated in a nested call. The call was reverted as a result. Make sure valid inputs are provided to the nested
call (for instance, via passed arguments)

£ SYSFIXED

AUDIT RESULT

Function X | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
N SWC-100 . e - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 o) PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 L i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
: SWC-106) PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed ISSUE
Reentrancy SWC-107))
if the code performs recursive call. FOUND
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i) PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o) ISSUE
. SWC-111 Deprecated built-in functions should never be used.
Functions FOUND
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Function X | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Function X | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@sﬁrmm Function X | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Dec 28 2018 09:12:01 GMT+0000 (Coordinated Universal Time)
Finished Saturday Dec 29 2018 11:51:51 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File FunctionXToken.sol

| Detected Issues

ID Title Severity | Status

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIOR TO SOLIDITY 0.5.0) low acknowledged
SWC-103 | A FLOATING PRAGMA IS SET. low acknowledged
SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged
SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED. low acknowledged

£ SYSFIXED

USE OF THE "CONSTANT" STATE MUTABILITY MODIFIER IS

SWC-111 low | acknowledged
DEPRECATED.

SWC-123 | REQUIREMENT VIOLATION. low | acknowledged

SWC-123 | REQUIREMENT VIOLATION. low | acknowledged

@S\FSHREU Function X | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 328

low SEVERITY

The function definition of "tokenFallback" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- FunctionXToken.sol

Locations

327

328 function tokenFal | back(address sender, uint256 _value, bytes _extrabData) returns
(bool) {}

329

330 }

331

332

@S\FSHREU Function X | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 352

low SEVERITY

The function definition of "FunctionXToken" lacks a visibility specifier. Note that the compiler assumes "public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- FunctionXToken.sol

Locations

351

352 function FunctionXToken() {
353

354 }

355

356

@S\FSHREU Function X | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 364

low SEVERITY

The function definition of "setStopReceive" lacks a visibility specifier. Note that the compiler assumes “public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- FunctionXToken.sol

Locations

363

364 function set St opRecei ve(bool stop) {
365 st opRecei ve[msg. sender] = stop;

366 }

367

368

@S\FSHREU Function X | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 398

low SEVERITY

The function definition of "transferAndCall" lacks a visibility specifier. Note that the compiler assumes “public"
visibility by default. Function visibility should always be specified explicitly to assure correctness of the code
and improve readability.

Source File
- FunctionXToken.sol

Locations

397

398 function transferAndCal | (address _recipient, uint256 _anount, bytes _data) {
399 require(_recipient !'= address(0));

400 requi re(_anount <= bal ances[nsg. sender]);

401

402

@‘S\FSHREU Function X | Security Analysis

SWC-100 | FUNCTION VISIBILITY IS NOT SET (PRIORTO

SOLIDITY 0.5.0)
LINE 410

low SEVERITY

The function definition of "transferERCToken" lacks a visibility specifier. Note that the compiler assumes
"public” visibility by default. Function visibility should always be specified explicitly to assure correctness of the
code and improve readability.

Source File
- FunctionXToken.sol

Locations

409

410 function transfer ERCToken(address _tokenContract Address, address _to, uint256
_anmount) onl yOaner {

411 requi re(ERC20(_t okenCont r act Address) .transfer(_to, _anount));

412}

413

414

@‘S\FSFHEU Function X | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY

The current pragma Solidity directive is ""*0.4.11"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FunctionXToken.sol

Locations

pragma solidity ~0.4.11;

library SafeMath {

© 00N O O b

@‘S\FSFHEU Function X | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS

EXECUTED.
LINE 411

low SEVERITY

An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- FunctionXToken.sol

Locations

410 function transfer ERCToken(address _tokenContract Address, address _to, uint256
_anmount) onl yOaner {
411 requi re(ERC20(_t okenContr act Address).transfer(_to, _anount));

412}
413
414}

415

@‘S\FSHREU Function X | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS

EXECUTED.
LINE 405

low SEVERITY

An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- FunctionXToken.sol

Locations

404

405 requi re(TokenReci pi ent (_reci pi ent).tokenFal | back(nsg. sender, _amount, _data));
406 Transfer(nsg. sender, _recipient, _anmount);

407 }

408

409

@S\FSHREU Function X | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 94

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal.
Other possible visibility settings are public and private.

Source File
- FunctionXToken.sol

Locations
93
94 mappi ng(address => ui nt 256) bal ances;
95
96 [**
97 * @lev transfer token for a specified address
98

@‘S\FSHREU Function X | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 362

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "stopReceive" is
internal. Other possible visibility settings are public and private.

Source File
- FunctionXToken.sol

Locations
361
362 nmappi ng (address => bool) stopRecei ve;
363

364 function set St opRecei ve(bool stop) {
365 st opRecei ve[msg. sender] = stop;
366

@‘S\FSFHEU Function X | Security Analysis

SWC-110 | AN ASSERTION VIOLATION WAS TRIGGERED.
LINE 32

low SEVERITY

It is possible to cause an assertion violation. Note that Solidity assert() statements should only be used to
check invariants. Review the transaction trace generated for this issue and either make sure your program
logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce
preconditions. Remember to validate inputs from both callers (for instance, via passed arguments) and callees
(for instance, via return values).

Source File
- FunctionXToken.sol

Locations

31 uint256 ¢ = a + b;
32 assert(c >= a);
33 return c;

34 }

35 }

36

@S\FSHREU Function X | Security Analysis

SWC-111 | USE OF THE "CONSTANT" STATE MUTABILITY
MODIFIER IS DEPRECATED.

LINE 368

low SEVERITY

Using "constant" as a state mutability modifier in function "getStopReceive" is disallowed as of Solidity version
0.5.0. Use "view" instead.

Source File
- FunctionXToken.sol

Locations

367

368 function get St opReceive() constant public returns (bool) {
369 return stopRecei ve[nsg. sender];

370 }

371

372

@‘S\FSHREU Function X | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 411

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- FunctionXToken.sol

Locations

410 function transfer ERCToken(address _tokenContract Address, address _to, uint256
_anmount) onl yOmner {
411 requi re(ERC20(_t okenContract Address).transfer(_to, _anount));

412}
413
414}

415

@‘S\FSHREU Function X | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 405

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- FunctionXToken.sol

Locations

404

405 requi re(TokenReci pi ent (_reci pi ent).tokenFal | back(nsg. sender, _anmount, _data));
406 Transfer(nsg. sender, _recipient, _anmount);

407 1}

408

409

@S\FSHREU Function X | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@S\FSHREU Function X | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

