
RewardTax

Smart Contract
Audit Report

25 Dec 2022

RewardTax | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

RewardTax | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

RewardTax REWARD Binance Smart Chain

| Addresses

Contract address 0xe552bbA3040D31Aca73880fbd400A70C9B870495

Contract deployer address 0xee48e87f570E4D7D28b6Af21E704713442bC2407

| Project Website

https://rewardtax.live/

| Codebase

https://bscscan.com/address/0xe552bbA3040D31Aca73880fbd400A70C9B870495#code

https://rewardtax.live/
https://bscscan.com/address/0xe552bbA3040D31Aca73880fbd400A70C9B870495#code

RewardTax | Security Analysis

SUMMARY

RewardTax is a multi-chain ecosystem including RSWAP, RBRIDGE, Negative tax (Tax as a Reward#TaaR), NFT
Marketplace, and Staking on BSC.

| Contract Summary

Documentation Quality

RewardTax provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by RewardTax with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 650, 662, 680, 915, 938, 971, 973, 994, 995, 1020, 1022, 1071, 1175, 1207, 1285, 1293, 1294, 1296,
1309, 1314, 1317, 1318, 1321, 1338, 1341, 1342, 1355, 1358, 1359, 1378, 1380, 1394, 1398, 1403, 1403
and 1404.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10, 82, 329,
392, 419, 504, 589, 707, 737 and 1120.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 1163, 1167 and 1313.

RewardTax | Security Analysis

CONCLUSION

We have audited the RewardTax project released on December 2022 to discover issues and identify potential
security vulnerabilities in RewardTax Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the RewardTax smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a public state variable with array type causing reachable exception
by default and out of bounds array access which the index access expression can cause an exception in case
of the use of an invalid array index value.

RewardTax | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

RewardTax | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

RewardTax | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Dec 24 2022 10:39:24 GMT+0000 (Coordinated Universal Time)

Finished Sunday Dec 25 2022 19:10:54 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File RewardTax.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 650

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

649) internal {

650 uint256 newAllowance = token.allowance(address(this), spender) + value;

651 _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender,

newAllowance));

652 }

653

654

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 662

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

661 require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");

662 uint256 newAllowance = oldAllowance - value;

663 _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender,

newAllowance));

664 }

665 }

666

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 680

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

679 uint256 nonceAfter = token.nonces(owner);

680 require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");

681 }

682

683 /**

684

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 915

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

914 address owner = _msgSender();

915 _approve(owner, spender, allowance(owner, spender) + addedValue);

916 return true;

917 }

918

919

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 938

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

937 unchecked {

938 _approve(owner, spender, currentAllowance - subtractedValue);

939 }

940

941 return true;

942

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 971

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

970 unchecked {

971 _balances[from] = fromBalance - amount;

972 }

973 _balances[to] += amount;

974

975

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 973

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

972 }

973 _balances[to] += amount;

974

975 emit Transfer(from, to, amount);

976

977

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 994

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

993

994 _totalSupply += amount;

995 _balances[account] += amount;

996 emit Transfer(address(0), account, amount);

997

998

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 995

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

994 _totalSupply += amount;

995 _balances[account] += amount;

996 emit Transfer(address(0), account, amount);

997

998 _afterTokenTransfer(address(0), account, amount);

999

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1020

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1019 unchecked {

1020 _balances[account] = accountBalance - amount;

1021 }

1022 _totalSupply -= amount;

1023

1024

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1022

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1021 }

1022 _totalSupply -= amount;

1023

1024 emit Transfer(account, address(0), amount);

1025

1026

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1071

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1070 unchecked {

1071 _approve(owner, spender, currentAllowance - amount);

1072 }

1073 }

1074 }

1075

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1175

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1174

1175 uint256 constant public DIVISOR = 2**128;

1176

1177 constructor(address taxAccount, uint256 maxTaxAmount, address swapRouterAddress,

address busd, uint256 buyRewardAmount, uint256 preMint) ERC20("RewardTax", "REWARD") {

1178 require(taxAccount != address(0), "taxAccount_ can't be the zero address");

1179

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1207

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1206 emit AddWhitelist(_msgSender());

1207 _mint(msg.sender, preMint * 10 ** decimals());

1208 }

1209

1210 receive() external payable nonReentrant {

1211

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1285

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1284 function _addDividend(uint256 amount, bool _isBuy) internal {

1285 pendingSwapAmount = pendingSwapAmount + amount;

1286

1287 if(pendingSwapAmount > 10000 && !_isBuy && swapEnabled) {

1288 IERC20 rewardToken = IERC20(dividendToken);

1289

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1293

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1292 uint256 updatedBalance = rewardToken.balanceOf(address(this));

1293 uint256 balanceDifference = ((updatedBalance - oldBalance)/2) * DIVISOR;

1294 totalRewardShare = totalRewardShare + (balanceDifference / (totalSupply() -

balanceOf(poolAddress) - balanceOf(address(this))));

1295 pendingSwapAmount = 0;

1296 rewardToken.safeTransfer(taxAddress, ((updatedBalance - oldBalance)/2));

1297

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1294

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1293 uint256 balanceDifference = ((updatedBalance - oldBalance)/2) * DIVISOR;

1294 totalRewardShare = totalRewardShare + (balanceDifference / (totalSupply() -

balanceOf(poolAddress) - balanceOf(address(this))));

1295 pendingSwapAmount = 0;

1296 rewardToken.safeTransfer(taxAddress, ((updatedBalance - oldBalance)/2));

1297 }

1298

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1296

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1295 pendingSwapAmount = 0;

1296 rewardToken.safeTransfer(taxAddress, ((updatedBalance - oldBalance)/2));

1297 }

1298 catch Error(string memory){

1299

1300

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1309

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1308 if(payoutEnabled) {

1309 for(uint256 i=0; i<userCount; i++) {

1310 if(userCtr == holders.length) {

1311 userCtr = 0;

1312 }

1313

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1314

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1313 address userAddress = holders[userCtr];

1314 uint256 claimableRate = totalRewardShare - rewardShareClaimed[userAddress];

1315 if(claimableRate > 0) {

1316 uint256 userBalance = IERC20(address(this)).balanceOf(userAddress);

1317 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1318

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1317

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1316 uint256 userBalance = IERC20(address(this)).balanceOf(userAddress);

1317 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1318 IERC20(dividendToken).safeTransfer(userAddress ,(userBalance *

claimableRate)/DIVISOR);

1319

1320 }

1321

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1318

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1317 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1318 IERC20(dividendToken).safeTransfer(userAddress ,(userBalance *

claimableRate)/DIVISOR);

1319

1320 }

1321 userCtr++;

1322

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1321

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1320 }

1321 userCtr++;

1322 }

1323 }

1324

1325

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1338

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1337 //do the claim for the user

1338 uint256 claimableRate = totalRewardShare - rewardShareClaimed[userAddress];

1339 uint256 userBalance = IERC20(address(this)).balanceOf(userAddress);

1340 if(claimableRate > 0 && userBalance > 0) {

1341 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1342

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1341

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1340 if(claimableRate > 0 && userBalance > 0) {

1341 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1342 IERC20(dividendToken).safeTransfer(userAddress ,(userBalance *

claimableRate)/DIVISOR);

1343 }

1344 }

1345

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1342

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1341 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1342 IERC20(dividendToken).safeTransfer(userAddress ,(userBalance *

claimableRate)/DIVISOR);

1343 }

1344 }

1345 else{

1346

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1355

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1354 //do the claim for the user

1355 uint256 claimableRate = totalRewardShare - rewardShareClaimed[userAddress];

1356 uint256 userBalance = IERC20(address(this)).balanceOf(userAddress);

1357 if(claimableRate > 0 && userBalance > 0) {

1358 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1359

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1358

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1357 if(claimableRate > 0 && userBalance > 0) {

1358 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1359 IERC20(dividendToken).safeTransfer(userAddress ,(userBalance *

claimableRate)/DIVISOR);

1360 }

1361 }

1362

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1359

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1358 rewardShareClaimed[userAddress] = rewardShareClaimed[userAddress] + claimableRate;

1359 IERC20(dividendToken).safeTransfer(userAddress ,(userBalance *

claimableRate)/DIVISOR);

1360 }

1361 }

1362

1363

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1378

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1377 function _rewardUser(address userAddress, uint256 amount) internal {

1378 uint256 rewardAmount = (buyReward * amount)/100;

1379 //send user the reward from current address

1380 if(balanceOf(address(this)) - pendingSwapAmount >= rewardAmount) {

1381 _transfer(address(this), userAddress, rewardAmount);

1382

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1380

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1379 //send user the reward from current address

1380 if(balanceOf(address(this)) - pendingSwapAmount >= rewardAmount) {

1381 _transfer(address(this), userAddress, rewardAmount);

1382 emit RewardUser(userAddress, rewardAmount);

1383 }

1384

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1394

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1393 require(amount >= 10000, "Amount too low");

1394 uint256 taxAmount = (buyTax * amount) / 100;

1395 _transfer(from , address(this), taxAmount);

1396 _addDividend(taxAmount, true);

1397 _rewardUser(to, amount);

1398

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1398

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1397 _rewardUser(to, amount);

1398 amount = amount - taxAmount;

1399 }

1400 else if(to == poolAddress) {

1401 //Add sellTax

1402

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1402 require(amount >= 10000, "Amount too low");

1403 uint256 taxAmount = (sellTax * amount) / 100;

1404 amount = amount - taxAmount;

1405 _transfer(from , address(this), taxAmount);

1406 _addDividend(taxAmount, false);

1407

RewardTax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1404

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RewardTax.sol

Locations

1403 uint256 taxAmount = (sellTax * amount) / 100;

1404 amount = amount - taxAmount;

1405 _transfer(from , address(this), taxAmount);

1406 _addDividend(taxAmount, false);

1407 }

1408

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

9

10 pragma solidity ^0.8.0;

11

12 /**

13 * @dev Contract module that helps prevent reentrant calls to a function.

14

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 82

low SEVERITY
The current pragma Solidity directive is ""^0.8.1"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

81

82 pragma solidity ^0.8.1;

83

84 /**

85 * @dev Collection of functions related to the address type

86

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 329

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

328

329 pragma solidity ^0.8.0;

330

331 /**

332 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via

signatures, as defined in

333

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 392

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

391

392 pragma solidity ^0.8.0;

393

394 /**

395 * @dev Provides information about the current execution context, including the

396

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 419

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

418

419 pragma solidity ^0.8.0;

420

421

422 /**

423

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 504

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

503

504 pragma solidity ^0.8.0;

505

506 /**

507 * @dev Interface of the ERC20 standard as defined in the EIP.

508

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 589

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

588

589 pragma solidity ^0.8.0;

590

591

592

593

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 707

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

706

707 pragma solidity ^0.8.0;

708

709

710 /**

711

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 737

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

736

737 pragma solidity ^0.8.0;

738

739

740

741

RewardTax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1120

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RewardTax.sol

Locations

1119

1120 pragma solidity ^0.8.4;

1121

1122

1123

1124

RewardTax | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1163

low SEVERITY
The public state variable "swapPath" in "RewardTax" contract has type "address[]" and can cause an exception
in case of use of invalid array index value.

Source File
- RewardTax.sol

Locations

1162 bool public payoutEnabled;

1163 address[] public swapPath;

1164

1165 mapping(address => uint256) public rewardShareClaimed;

1166

1167

RewardTax | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1167

low SEVERITY
The public state variable "holders" in "RewardTax" contract has type "address[]" and can cause an exception in
case of use of invalid array index value.

Source File
- RewardTax.sol

Locations

1166

1167 address[] public holders;

1168 mapping(address => bool) public isHolder;

1169 address public poolAddress;

1170 mapping(address => bool) public blacklist;

1171

RewardTax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1313

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RewardTax.sol

Locations

1312 }

1313 address userAddress = holders[userCtr];

1314 uint256 claimableRate = totalRewardShare - rewardShareClaimed[userAddress];

1315 if(claimableRate > 0) {

1316 uint256 userBalance = IERC20(address(this)).balanceOf(userAddress);

1317

RewardTax | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

RewardTax | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

