
Billiard Crypto Reward

Smart Contract
Audit Report

21 Feb 2023

Billiard Crypto Reward | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Billiard Crypto Reward | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Billiard Crypto Reward BICR Binance Smart Chain

| Addresses

Contract address 0xedbac1830c1b3280882c73449198ebf6a35ede43

Contract deployer address 0xA7618C49B0C419969F012B3e44a6DA9281744cc3

| Project Website

https://billiardcrypto.com/

| Codebase

https://bscscan.com/address/0xedbac1830c1b3280882c73449198ebf6a35ede43#code

https://billiardcrypto.com/
https://bscscan.com/address/0xedbac1830c1b3280882c73449198ebf6a35ede43#code

Billiard Crypto Reward | Security Analysis

SUMMARY

Billiard Crypto is a simple game, but it takes players a lot of practice to get used to it. The primary operations
are drag and drop and correct angles. Different game modes, such as Solo, PvP, and Tournament, will be
released gradually according to the schedule.

| Contract Summary

Documentation Quality

Billiard Crypto Reward provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Billiard Crypto Reward with the discovery
of several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 453.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 198, 220, 245, 276, 277, 292, 293, 315, 316, 460, 460, 529, 539, 550, 580, 589, 595, 604, 604, 611,
615, 615, 635, 636, 636, 638, 644, 645, 645, 647, 647, 655, 707, 707, 728, 736, 749, 767 and 770.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 667, 668, 750, 768 and 771.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 580 and 714.

Billiard Crypto Reward | Security Analysis

CONCLUSION

We have audited the Billiard Crypto Reward project released on February 2023 to discover issues and identify
potential security vulnerabilities in Billiard Crypto Reward Project. This process is used to find technical issues
and security loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the NamaFile smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, the potential use of
"block.number" as a source of randomness, and out-of-bounds array access which the index access
expression can cause an exception in case of the use of an invalid array index value. The current pragma
Solidity directive is ""^0.8.17"". Specifying a fixed compiler version is recommended to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on bytecode-level verification of
the code. It is best practice to set the visibility of state variables explicitly. The default visibility for
"IERCliquidityPairToken" is internal. Other possible visibility settings are public and private. Potential use of
"block.number" as a source of randomness, the environment variable "block.number" looks like it might be
used as a source of randomness. Note that the values of variables like coinbase, gaslimit, block number, and
timestamp are predictable and can be manipulated by a malicious miner. Also, keep in mind that attackers
know hashes of earlier blocks. Don't use any of those environment variables as sources of randomness; be
aware that using these variables introduces a certain level of trust in miners.

Billiard Crypto Reward | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Billiard Crypto Reward | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Billiard Crypto Reward | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Billiard Crypto Reward | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Feb 20 2023 21:05:16 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Feb 21 2023 08:06:48 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BilliardCryptoReward.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 198

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

197 require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");

198 _approve(sender, _msgSender(), currentAllowance - amount);

199

200 return true;

201 }

202

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 220

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

219 {

220 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

221 return true;

222 }

223

224

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 245

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

244 require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below

zero");

245 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

246

247 return true;

248 }

249

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

275 require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");

276 _balances[sender] = senderBalance - amount;

277 _balances[recipient] += amount;

278

279 emit Transfer(sender, recipient, amount);

280

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 277

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

276 _balances[sender] = senderBalance - amount;

277 _balances[recipient] += amount;

278

279 emit Transfer(sender, recipient, amount);

280 }

281

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 292

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

291

292 _totalSupply += amount;

293 _balances[account] += amount;

294 emit Transfer(address(0), account, amount);

295 }

296

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 293

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

292 _totalSupply += amount;

293 _balances[account] += amount;

294 emit Transfer(address(0), account, amount);

295 }

296

297

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 315

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

314 require(accountBalance >= amount, "ERC20: burn amount exceeds balance");

315 _balances[account] = accountBalance - amount;

316 _totalSupply -= amount;

317

318 emit Transfer(account, address(0), amount);

319

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 316

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

315 _balances[account] = accountBalance - amount;

316 _totalSupply -= amount;

317

318 emit Transfer(account, address(0), amount);

319 }

320

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 460

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

459

460 uint256 public tokenLiquidityThreshold = 1e4 * 10**18;

461

462 uint256 public genesis_block;

463 uint256 private deadline = 1;

464

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 460

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

459

460 uint256 public tokenLiquidityThreshold = 1e4 * 10**18;

461

462 uint256 public genesis_block;

463 uint256 private deadline = 1;

464

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 529

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

528 require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");

529 _approve(sender, _msgSender(), currentAllowance - amount);

530

531 return true;

532 }

533

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 539

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

538 {

539 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

540 return true;

541 }

542

543

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 550

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

549 require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below

zero");

550 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

551

552 return true;

553 }

554

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 580

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

579 !exemptFee[recipient] &&

580 block.number < genesis_block + deadline;

581

582 //set fee to zero if fees in contract are handled or exempted

583 if (_interlock || exemptFee[sender] || exemptFee[recipient])

584

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 589

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

588 feeswap =

589 sellTaxes.liquidity +

590 sellTaxes.marketing ;

591 feesum = feeswap;

592 currentTaxes = sellTaxes;

593

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 595

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

594 feeswap =

595 taxes.liquidity +

596 taxes.marketing ;

597 feesum = feeswap;

598 currentTaxes = taxes;

599

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 604

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

603

604 fee = (amount * feesum) / 100;

605

606 //send fees if threshold has been reached

607 //don't do this on buys, breaks swap

608

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 604

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

603

604 fee = (amount * feesum) / 100;

605

606 //send fees if threshold has been reached

607 //don't do this on buys, breaks swap

608

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

610 //rest to recipient

611 super._transfer(sender, recipient, amount - fee);

612 if (fee > 0) {

613 //send the fee to the contract

614 if (feeswap > 0) {

615

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 615

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

614 if (feeswap > 0) {

615 uint256 feeAmount = (amount * feeswap) / 100;

616 super._transfer(sender, address(this), feeAmount);

617 }

618

619

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 615

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

614 if (feeswap > 0) {

615 uint256 feeAmount = (amount * feeswap) / 100;

616 super._transfer(sender, address(this), feeAmount);

617 }

618

619

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 635

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

634 // Split the contract balance into halves

635 uint256 denominator = feeswap * 2;

636 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

637 denominator;

638 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

639

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 636

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

635 uint256 denominator = feeswap * 2;

636 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

637 denominator;

638 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

639

640

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 636

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

635 uint256 denominator = feeswap * 2;

636 uint256 tokensToAddLiquidityWith = (contractBalance * swapTaxes.liquidity) /

637 denominator;

638 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

639

640

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 638

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

637 denominator;

638 uint256 toSwap = contractBalance - tokensToAddLiquidityWith;

639

640 uint256 initialBalance = IERCliquidityPairToken.balanceOf(address(liquifier));

641

642

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 644

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

643

644 uint256 deltaBalance = IERCliquidityPairToken.balanceOf(address(liquifier)) -

initialBalance;

645 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

646

647 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

648

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

644 uint256 deltaBalance = IERCliquidityPairToken.balanceOf(address(liquifier)) -

initialBalance;

645 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

646

647 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

648 if (marketingAmt > 0) {

649

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

644 uint256 deltaBalance = IERCliquidityPairToken.balanceOf(address(liquifier)) -

initialBalance;

645 uint256 unitBalance = deltaBalance / (denominator - swapTaxes.liquidity);

646

647 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

648 if (marketingAmt > 0) {

649

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 647

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

646

647 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

648 if (marketingAmt > 0) {

649 IERCliquidityPairToken.transferFrom(address(liquifier), marketingWallet,

marketingAmt);

650 }

651

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 647

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

646

647 uint256 marketingAmt = unitBalance * 2 * swapTaxes.marketing;

648 if (marketingAmt > 0) {

649 IERCliquidityPairToken.transferFrom(address(liquifier), marketingWallet,

marketingAmt);

650 }

651

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 655

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

654

655 uint256 ethPairToAddLiquidityWith = unitBalance * swapTaxes.liquidity;

656 if (ethPairToAddLiquidityWith > 0) {

657 // Add liquidity to pancake

658 addLiquidity(tokensToAddLiquidityWith, ethPairToAddLiquidityWith);

659

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 707

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

706 require(new_amount <= 1e5, "Swap threshold amount should be lower or equal to 1% of

tokens");

707 tokenLiquidityThreshold = new_amount * 10**decimals();

708 }

709

710 function EnableTrading() external onlyOwner {

711

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 707

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

706 require(new_amount <= 1e5, "Swap threshold amount should be lower or equal to 1% of

tokens");

707 tokenLiquidityThreshold = new_amount * 10**decimals();

708 }

709

710 function EnableTrading() external onlyOwner {

711

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 728

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

727 taxes = Taxes(_marketing, _liquidity);

728 require((_marketing + _liquidity) <= 5, "Must keep fees at 5% or less");

729 }

730

731 function SetSellTaxes(

732

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 736

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

735 sellTaxes = Taxes(_marketing, _liquidity);

736 require((_marketing + _liquidity) <= 5, "Must keep fees at 5% or less");

737 }

738

739 function updateMarketingWallet(address newWallet) external onlyOwner {

740

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 749

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

748 function bulkExemptFee(address[] memory accounts, bool state) external onlyOwner {

749 for (uint256 i = 0; i < accounts.length; i++) {

750 exemptFee[accounts[i]] = state;

751 }

752 }

753

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 767

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

766) public onlyOwner {

767 for (uint256 index; index < newAddr.length; index++) {

768 blackList[newAddr[index]] = true;

769 }

770 for (uint256 index; index < removedAddr.length; index++) {

771

Billiard Crypto Reward | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 770

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BilliardCryptoReward.sol

Locations

769 }

770 for (uint256 index; index < removedAddr.length; index++) {

771 blackList[removedAddr[index]] = false;

772 }

773 }

774

Billiard Crypto Reward | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BilliardCryptoReward.sol

Locations

10

11 pragma solidity ^0.8.17;

12

13 abstract contract Context {

14 function _msgSender() internal view virtual returns (address) {

15

Billiard Crypto Reward | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 453

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"IERCliquidityPairToken" is internal. Other possible visibility settings are public and private.

Source File
- BilliardCryptoReward.sol

Locations

452 address public liquidityPairToken;

453 IERC20 IERCliquidityPairToken;

454 Liquifier public liquifier;

455

456 bool private _interlock = false;

457

Billiard Crypto Reward | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 667

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BilliardCryptoReward.sol

Locations

666 address[] memory path = new address[](2);

667 path[0] = address(this);

668 path[1] = liquidityPairToken;

669

670 _approve(address(this), address(router), tokenAmount);

671

Billiard Crypto Reward | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 668

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BilliardCryptoReward.sol

Locations

667 path[0] = address(this);

668 path[1] = liquidityPairToken;

669

670 _approve(address(this), address(router), tokenAmount);

671

672

Billiard Crypto Reward | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 750

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BilliardCryptoReward.sol

Locations

749 for (uint256 i = 0; i < accounts.length; i++) {

750 exemptFee[accounts[i]] = state;

751 }

752 }

753

754

Billiard Crypto Reward | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 768

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BilliardCryptoReward.sol

Locations

767 for (uint256 index; index < newAddr.length; index++) {

768 blackList[newAddr[index]] = true;

769 }

770 for (uint256 index; index < removedAddr.length; index++) {

771 blackList[removedAddr[index]] = false;

772

Billiard Crypto Reward | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 771

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BilliardCryptoReward.sol

Locations

770 for (uint256 index; index < removedAddr.length; index++) {

771 blackList[removedAddr[index]] = false;

772 }

773 }

774

775

Billiard Crypto Reward | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 580

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BilliardCryptoReward.sol

Locations

579 !exemptFee[recipient] &&

580 block.number < genesis_block + deadline;

581

582 //set fee to zero if fees in contract are handled or exempted

583 if (_interlock || exemptFee[sender] || exemptFee[recipient])

584

Billiard Crypto Reward | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 714

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BilliardCryptoReward.sol

Locations

713 providingLiquidity = true;

714 genesis_block = block.number;

715 }

716

717 function updatedeadline(uint256 _deadline) external onlyOwner {

718

Billiard Crypto Reward | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Billiard Crypto Reward | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

