oty
ooo
v

Mudol2 Token

Smart Contract
Audit Report

@ SYSFIXED 01 Jul 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Mudol2 Token | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Mudol2 Token | Security Analysis

Project name

Token ticker

Blockchain

Mudol2 Token

MUDOL2

Binance Smart Chain

| Addresses

Contract address

0x5e7f472b9481c80101b22d0ba4ef4253aa61dabc

Contract deployer address

0x3fEd17b0Ce085AC209406e489BB916Eeef99D38B

| Project Website

https://heroblaze3kd.io/

| Codebase

https://bscscan.com/address/0x5e7f472b9481c80101b22d0ba4ef4253aa61dabc#code

https://heroblaze3kd.io/
https://bscscan.com/address/0x5e7f472b9481c80101b22d0ba4ef4253aa61dabc#code

@ SYSFIXED Mudol2 Token | Security Analysis

SUMMARY

Hero Blaze: Three Kingdoms is a BNB Chain-based casual RPG mobile game integrated with Play and Earn. We
have applied the latest trend in simple RPG while leveraging the successful Hero Blaze's IP. It is the first
collaboration with the NFT platform and metaverse game KLAYMETA, and we have successfully adopted Play
and Earn in the casual RPG genre. Enjoy the story of the Three Kingdoms, collect hundreds of generals, and
train them through various general training systems such as general summons, general combination, general
promotion, equipment upgrade, research, and more in Hero Blaze: Three Kingdoms. You can form the
strongest team through trained generals through general skills, team combination, and formation effects to
compete with other players in different battles using your strategy. Play casually through easy controls, enjoy
fast growth and action-packed battles without repetitive gameplay through an Idle system! Hero Blaze: Three
Kingdoms can be played through the platforms below. Play for free now.

| Contract Summary

Documentation Quality
Mudol2 Token provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by Mudol2 Token with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 9, 21, 31, 32, 43, 54, 88, 88, 88 and 88.
e SWC-120 | It is recommended to use external sources of randomness via oracles on lines 110 and 168.

@ SYSFIXED Mudol2 Token | Security Analysis

CONCLUSION

We have audited the Mudol2 Token project released on January 2022 to discover issues and identify potential
security vulnerabilities in Mudol2 Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Mudol2 Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues and the potential use of "block.number" as a source of randomness.

@ SYSFIXED Mudol2 Token | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same
Floating Pragma SWC-103 compiler version and flags that they have been PASS
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107 . . PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Mudol2 Token | Security Analysis

Execution of the code should never be blocked by a
specific contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only
once during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

When inheriting multiple contracts, especially if they have

identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

ISSUE
FOUND

PASS

PASS

PASS

PASS

£ SYSFIXED

Mudol2 Token | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@ SYSFIXED Mudol2 Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jun 30 2022 23:20:34 GMT+0000 (Coordinated Universal Time)
Finished Friday Jul 01 2022 06:51:50 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File MUDOL2.sol

| Detected Issues

ID Title Severity | Status
SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-120 POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF low acknowledged
RANDOMNESS.
SWC-120 POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF low acknowledged
RANDOMNESS.

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 9

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

8 function add(uint256 a, uint256 b) internal pure returns (uint256) {
9 uint256 ¢ = a + b;

10 require(c >= a, "SafeMath: addition overflow');

11

12 return c;

13

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 21

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

20 require(b <= a, errorMessage);
21 uint256 ¢ = a - b;

22
23 return c;
24 }

25

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 31

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

30

31 uint256 ¢ = a * b;

32 require(c / a == b, "SafeMath: multiplication overflow');
33

34 return c;

35

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 32

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

31 uint256 ¢ = a * b;
32 require(c / a == b, "SafeMath: nultiplication overflow");

33
34 return c;
35 }

36

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 43

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

42 require(b > 0, errorMessage);
43 uint256 ¢ = a / b;

44
45 return c;
46 }

47

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 54

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

53 require(b !'= 0, errorMessage);
54 return a % b;

55}
56}
57

58

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 88

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

87 ui nt 256 public constant vMetaTreasuryAmunt = 25000000 et her;

88 ui nt 256 public constant runningBlocks = 3 * 365 * 24 * 60 * 20; // 3 years = 3 * 365
* 24 * 60 * 60 / 3

89

90 ui nt 256 public m ningAnount; [/ ? ?2???? ??2? ?7?

91 ui nt 256 public initial Amount;

92

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 88

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

87 ui nt 256 public constant vMetaTreasuryAmunt = 25000000 et her;

88 ui nt 256 public constant runningBlocks = 3 * 365 * 24 * 60 * 20; // 3 years = 3 * 365
* 24 * 60 * 60 / 3

89

90 ui nt 256 public m ningAnount; [/ ? ?2???? ??2? ?7?

91 ui nt 256 public initial Amount;

92

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 88

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

87 ui nt 256 public constant vMetaTreasuryAmunt = 25000000 et her;

88 ui nt 256 public constant runningBlocks = 3 * 365 * 24 * 60 * 20; // 3 years = 3 * 365
* 24 * 60 * 60 / 3

89

90 ui nt 256 public m ningAnount; [/ ? ?2???? ??2? ?7?

91 ui nt 256 public initial Amount;

92

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 88

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- MUDOL2.sol

Locations

87 ui nt 256 public constant vMetaTreasuryAmunt = 25000000 et her;

88 ui nt 256 public constant runningBlocks = 3 * 365 * 24 * 60 * 20; // 3 years = 3 * 365
* 24 * 60 * 60 / 3

89

90 ui nt 256 public m ningAnount; [/ ? ?2???? ??2? ?7?

91 ui nt 256 public initial Amount;

92

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 110

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- MUDOL2.sol

Locations

109 require(_m nabl eBl ock > bl ock. nunber);

110 m nabl eBl ock = _mi nabl eBl ock;
111 | astM ned = O;
112

113 initial Amount =

initiallssuanceAnmount. add(teamArmount). add(pri vat eSal eAnpunt). add(advi sor Amount) . add(vMet a
Tr easur yAnount) ;

114

@ SYSFIXED Mudol2 Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE

OF RANDOMNESS.
LINE 168

low SEVERITY

The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- MUDOL2.sol

Locations

167 ui nt 256 _endBl ock = bl ock. nunber;

168 ui nt 256 _startBl ock = m nabl eBl ock;

169 if (_endBlock < _startBlock) return O;

170

171 uint256 _curM ned = ((_endBl ock. sub(_startBl ock)).add(1)). nmul (bl ockAmount);
172

@ SYSFIXED Mudol2 Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@ SYSFIXED Mudol2 Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

