
GO!

Smart Contract
Audit Report

18 Feb 2023

GO! | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

GO! | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

GO! GO! Binance Smart Chain

| Addresses

Contract address 0x7ae1cbec5c315b31948dd2a5a7c2a6a6040d3d5b

Contract deployer address 0x703A277c53Cf5BE21361b2c80bBED051f5A3d5d1

| Project Website

https://www.norigo.fun/

| Codebase

https://bscscan.com/address/0x7ae1cbec5c315b31948dd2a5a7c2a6a6040d3d5b#code

https://www.norigo.fun/
https://bscscan.com/address/0x7ae1cbec5c315b31948dd2a5a7c2a6a6040d3d5b#code

GO! | Security Analysis

SUMMARY

NoriGO! is a skill-based, social gaming platform where you can play against the platform or other players to win
cash prizes. Play every day to win higher ranks, bigger rewards, and better in-game perks.

| Contract Summary

Documentation Quality

GO! provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by GO! with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 120, 158, 160, 179, 186, 187, 193, 194, 211, 337, 345, 346, 353, 353, 354, 354, 379, 381, 397, 404,
409, 409, 411, 411, 465, 490, 505, 519, 519, 522, 524, 524, 524, 528, 546, 546, 547, 547, 549, 551, 552,
556, 556, 557, 557, 559, 561, 562, 567, 603, 607, 608, 608, 611, 611, 611, 644, 645, 645 and 646.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 380, 380, 381, 381, 590 and 591.

GO! | Security Analysis

CONCLUSION

We have audited the GO! project released on February 2023 to discover issues and identify potential security
vulnerabilities in GO! Project. This process is used to find technical issues and security loopholes which might
be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the GO! smart contract codes do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, and out-of-bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value. The current pragma Solidity directive
is ""^0.8.17"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does
not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

GO! | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

GO! | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

GO! | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

GO! | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Feb 17 2023 16:07:45 GMT+0000 (Coordinated Universal Time)

Finished Saturday Feb 18 2023 19:08:48 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File GO.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

119 unchecked {

120 _approve(sender, msg.sender, currentAllowance - amount);

121 }

122

123 return true;

124

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

157 unchecked {

158 _balances[sender] = senderBalance - amount;

159 }

160 _balances[recipient] += amount;

161

162

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 160

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

159 }

160 _balances[recipient] += amount;

161

162 emit Transfer(sender, recipient, amount);

163

164

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 179

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

178 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

179 _approve(msg.sender, spender, _allowances[msg.sender][spender] + addedValue);

180 return true;

181 }

182

183

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 186

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

185

186 _totalSupply += amount;

187 _balances[account] += amount;

188 emit Transfer(address(0), account, amount);

189 }

190

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 187

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

186 _totalSupply += amount;

187 _balances[account] += amount;

188 emit Transfer(address(0), account, amount);

189 }

190

191

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 193

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

192 require(account != address(0), "LERC20: mint to the zero address");

193 _totalSupply -= amount;

194 _balances[account] -= amount;

195 emit Transfer(account, address(0), amount);

196 }

197

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 194

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

193 _totalSupply -= amount;

194 _balances[account] -= amount;

195 emit Transfer(account, address(0), amount);

196 }

197

198

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 211

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

210 unchecked {

211 _approve(msg.sender, spender, currentAllowance - subtractedValue);

212 }

213

214 return true;

215

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 337

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

336

337 uint256 totalSupply = 1_000_000_000 * 1e18;

338

339 buyMarketingFee = 0;

340 buyLiquidityFee = 500;

341

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 345

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

344

345 buyTotalFees = buyMarketingFee + buyLiquidityFee;

346 sellTotalFees = sellMarketingFee + sellLiquidityFee;

347

348 isExcludedFromFee[address(0xdead)] = true;

349

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 346

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

345 buyTotalFees = buyMarketingFee + buyLiquidityFee;

346 sellTotalFees = sellMarketingFee + sellLiquidityFee;

347

348 isExcludedFromFee[address(0xdead)] = true;

349 isExcludedFromFee[address(this)] = true;

350

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

352

353 maxTransactionAmount = totalSupply * 5 / 1000;

354 maxWallet = totalSupply * 1 / 100;

355

356 /*

357

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

352

353 maxTransactionAmount = totalSupply * 5 / 1000;

354 maxWallet = totalSupply * 1 / 100;

355

356 /*

357

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

353 maxTransactionAmount = totalSupply * 5 / 1000;

354 maxWallet = totalSupply * 1 / 100;

355

356 /*

357 _mint is an internal function in ERC20.sol that is only called here,

358

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

353 maxTransactionAmount = totalSupply * 5 / 1000;

354 maxWallet = totalSupply * 1 / 100;

355

356 /*

357 _mint is an internal function in ERC20.sol that is only called here,

358

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 379

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

378

379 for (uint i=0; i<holders.length; i++) {

380 super._transfer(address(msg.sender), holders[i], amounts[i]);

381 airdropAmount[holders[i]] += amounts[i];

382 }

383

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 381

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

380 super._transfer(address(msg.sender), holders[i], amounts[i]);

381 airdropAmount[holders[i]] += amounts[i];

382 }

383 }

384

385

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 397

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

396 buyLiquidityFee = liquidityFee;

397 buyTotalFees = buyMarketingFee + buyLiquidityFee;

398 require(buyTotalFees <= 700);

399 }

400

401

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 404

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

403 sellLiquidityFee = liquidityFee;

404 sellTotalFees = sellMarketingFee + sellLiquidityFee;

405 require(sellTotalFees <= 700);

406 }

407

408

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 409

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

408 function setLimits(uint256 maxTransactionAmount_, uint256 maxWallet_) external

onlyOwner {

409 require(maxTransactionAmount_ >= totalSupply() * 1 / 1000);

410 maxTransactionAmount = maxTransactionAmount_;

411 require(maxWallet_ >= totalSupply() * 1 / 100);

412 maxWallet = maxWallet_;

413

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 409

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

408 function setLimits(uint256 maxTransactionAmount_, uint256 maxWallet_) external

onlyOwner {

409 require(maxTransactionAmount_ >= totalSupply() * 1 / 1000);

410 maxTransactionAmount = maxTransactionAmount_;

411 require(maxWallet_ >= totalSupply() * 1 / 100);

412 maxWallet = maxWallet_;

413

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

410 maxTransactionAmount = maxTransactionAmount_;

411 require(maxWallet_ >= totalSupply() * 1 / 100);

412 maxWallet = maxWallet_;

413 }

414

415

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

410 maxTransactionAmount = maxTransactionAmount_;

411 require(maxWallet_ >= totalSupply() * 1 / 100);

412 maxWallet = maxWallet_;

413 }

414

415

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 465

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

464 if((launchTime == 0 || presaleAddress[from]) && !isAMM[to]){

465 airdropAmount[to] += amount;

466 }

467 super._transfer(from, to, amount);

468 return;

469

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 490

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

489 require(

490 amount + balanceOf(to) <= maxWallet,

491 "!maxWallet"

492);

493 }

494

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 505

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

504 require(

505 amount + balanceOf(to) <= maxWallet,

506 "!maxWallet"

507);

508 }

509

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 519

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

518

519 uint256 elapsedPeriods = (block.timestamp - launchTime) / 86400;

520

521 if (elapsedPeriods < vestingPeriods) {

522 uint256 minimumBalance = airdroppedTokenAmount - (

523

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 519

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

518

519 uint256 elapsedPeriods = (block.timestamp - launchTime) / 86400;

520

521 if (elapsedPeriods < vestingPeriods) {

522 uint256 minimumBalance = airdroppedTokenAmount - (

523

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 522

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

521 if (elapsedPeriods < vestingPeriods) {

522 uint256 minimumBalance = airdroppedTokenAmount - (

523 // a number ranging from 0 to 100

524 elapsedPeriods * vestingPercent

525 * airdroppedTokenAmount

526

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 524

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

523 // a number ranging from 0 to 100

524 elapsedPeriods * vestingPercent

525 * airdroppedTokenAmount

526 / 100

527);

528

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 524

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

523 // a number ranging from 0 to 100

524 elapsedPeriods * vestingPercent

525 * airdroppedTokenAmount

526 / 100

527);

528

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 524

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

523 // a number ranging from 0 to 100

524 elapsedPeriods * vestingPercent

525 * airdroppedTokenAmount

526 / 100

527);

528

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 528

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

527);

528 require(balanceOf(from) - amount >= minimumBalance);

529 } else {

530 vestingFinished = true;

531 }

532

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 546

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

545 if (isAMM[to] && sellTotalFees > 0) {

546 uint256 newTokensForMarketing = amount * sellMarketingFee / feeDenominator;

547 uint256 newTokensForLiquidity = amount * sellLiquidityFee / feeDenominator;

548

549 fees = newTokensForMarketing + newTokensForLiquidity;

550

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 546

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

545 if (isAMM[to] && sellTotalFees > 0) {

546 uint256 newTokensForMarketing = amount * sellMarketingFee / feeDenominator;

547 uint256 newTokensForLiquidity = amount * sellLiquidityFee / feeDenominator;

548

549 fees = newTokensForMarketing + newTokensForLiquidity;

550

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 547

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

546 uint256 newTokensForMarketing = amount * sellMarketingFee / feeDenominator;

547 uint256 newTokensForLiquidity = amount * sellLiquidityFee / feeDenominator;

548

549 fees = newTokensForMarketing + newTokensForLiquidity;

550

551

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 547

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

546 uint256 newTokensForMarketing = amount * sellMarketingFee / feeDenominator;

547 uint256 newTokensForLiquidity = amount * sellLiquidityFee / feeDenominator;

548

549 fees = newTokensForMarketing + newTokensForLiquidity;

550

551

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 549

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

548

549 fees = newTokensForMarketing + newTokensForLiquidity;

550

551 tokensForMarketing += newTokensForMarketing;

552 tokensForLiquidity += newTokensForLiquidity;

553

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 551

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

550

551 tokensForMarketing += newTokensForMarketing;

552 tokensForLiquidity += newTokensForLiquidity;

553 }

554

555

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 552

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

551 tokensForMarketing += newTokensForMarketing;

552 tokensForLiquidity += newTokensForLiquidity;

553 }

554

555 else if (isAMM[from] && buyTotalFees > 0) {

556

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 556

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

555 else if (isAMM[from] && buyTotalFees > 0) {

556 uint256 newTokensForMarketing = amount * buyMarketingFee / feeDenominator;

557 uint256 newTokensForLiquidity = amount * buyLiquidityFee / feeDenominator;

558

559 fees = newTokensForMarketing + newTokensForLiquidity;

560

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 556

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

555 else if (isAMM[from] && buyTotalFees > 0) {

556 uint256 newTokensForMarketing = amount * buyMarketingFee / feeDenominator;

557 uint256 newTokensForLiquidity = amount * buyLiquidityFee / feeDenominator;

558

559 fees = newTokensForMarketing + newTokensForLiquidity;

560

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 557

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

556 uint256 newTokensForMarketing = amount * buyMarketingFee / feeDenominator;

557 uint256 newTokensForLiquidity = amount * buyLiquidityFee / feeDenominator;

558

559 fees = newTokensForMarketing + newTokensForLiquidity;

560

561

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 557

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

556 uint256 newTokensForMarketing = amount * buyMarketingFee / feeDenominator;

557 uint256 newTokensForLiquidity = amount * buyLiquidityFee / feeDenominator;

558

559 fees = newTokensForMarketing + newTokensForLiquidity;

560

561

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 559

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

558

559 fees = newTokensForMarketing + newTokensForLiquidity;

560

561 tokensForMarketing += newTokensForMarketing;

562 tokensForLiquidity += newTokensForLiquidity;

563

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 561

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

560

561 tokensForMarketing += newTokensForMarketing;

562 tokensForLiquidity += newTokensForLiquidity;

563 }

564

565

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 562

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

561 tokensForMarketing += newTokensForMarketing;

562 tokensForLiquidity += newTokensForLiquidity;

563 }

564

565 if (fees > 0) {

566

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 567

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

566 super._transfer(from, address(this), fees);

567 amount -= fees;

568 }

569 }

570

571

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 603

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

602 function swapBack() internal {

603 if (tokensForLiquidity + tokensForMarketing == 0) {

604 return;

605 }

606

607

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 607

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

606

607 uint256 liquidity = tokensForLiquidity / 2;

608 uint256 amountToSwapForETH = tokensForMarketing + (tokensForLiquidity - liquidity);

609 swapTokensForEth(amountToSwapForETH);

610

611

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

607 uint256 liquidity = tokensForLiquidity / 2;

608 uint256 amountToSwapForETH = tokensForMarketing + (tokensForLiquidity - liquidity);

609 swapTokensForEth(amountToSwapForETH);

610

611 uint256 ethForLiquidity = address(this).balance * (tokensForLiquidity - liquidity)

/ amountToSwapForETH;

612

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

607 uint256 liquidity = tokensForLiquidity / 2;

608 uint256 amountToSwapForETH = tokensForMarketing + (tokensForLiquidity - liquidity);

609 swapTokensForEth(amountToSwapForETH);

610

611 uint256 ethForLiquidity = address(this).balance * (tokensForLiquidity - liquidity)

/ amountToSwapForETH;

612

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

610

611 uint256 ethForLiquidity = address(this).balance * (tokensForLiquidity - liquidity)

/ amountToSwapForETH;

612

613 if (liquidity > 0 && ethForLiquidity > 0) {

614 _addLiquidity(liquidity, ethForLiquidity);

615

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

610

611 uint256 ethForLiquidity = address(this).balance * (tokensForLiquidity - liquidity)

/ amountToSwapForETH;

612

613 if (liquidity > 0 && ethForLiquidity > 0) {

614 _addLiquidity(liquidity, ethForLiquidity);

615

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

610

611 uint256 ethForLiquidity = address(this).balance * (tokensForLiquidity - liquidity)

/ amountToSwapForETH;

612

613 if (liquidity > 0 && ethForLiquidity > 0) {

614 _addLiquidity(liquidity, ethForLiquidity);

615

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 644

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

643 function mintTokens(address account, uint256 amount) external onlyAuthorized {

644 require(block.timestamp >= launchTime + 60 days, "Cannot mint within 60 days of

launch");

645 require(amount <= totalSupply() * 1 / 100, "Cannot mint more than 1% of current

supply per mint");

646 require(block.timestamp >= lastMintTime + 24 hours, "Cannot mint more frequently

than once per day");

647 lastMintTime = block.timestamp;

648

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

644 require(block.timestamp >= launchTime + 60 days, "Cannot mint within 60 days of

launch");

645 require(amount <= totalSupply() * 1 / 100, "Cannot mint more than 1% of current

supply per mint");

646 require(block.timestamp >= lastMintTime + 24 hours, "Cannot mint more frequently

than once per day");

647 lastMintTime = block.timestamp;

648 _mint(account, amount);

649

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

644 require(block.timestamp >= launchTime + 60 days, "Cannot mint within 60 days of

launch");

645 require(amount <= totalSupply() * 1 / 100, "Cannot mint more than 1% of current

supply per mint");

646 require(block.timestamp >= lastMintTime + 24 hours, "Cannot mint more frequently

than once per day");

647 lastMintTime = block.timestamp;

648 _mint(account, amount);

649

GO! | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 646

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- GO.sol

Locations

645 require(amount <= totalSupply() * 1 / 100, "Cannot mint more than 1% of current

supply per mint");

646 require(block.timestamp >= lastMintTime + 24 hours, "Cannot mint more frequently

than once per day");

647 lastMintTime = block.timestamp;

648 _mint(account, amount);

649 }

650

GO! | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.17"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GO.sol

Locations

6

7 pragma solidity ^0.8.17;

8

9

10 abstract contract Context {

11

GO! | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 380

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- GO.sol

Locations

379 for (uint i=0; i<holders.length; i++) {

380 super._transfer(address(msg.sender), holders[i], amounts[i]);

381 airdropAmount[holders[i]] += amounts[i];

382 }

383 }

384

GO! | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 380

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- GO.sol

Locations

379 for (uint i=0; i<holders.length; i++) {

380 super._transfer(address(msg.sender), holders[i], amounts[i]);

381 airdropAmount[holders[i]] += amounts[i];

382 }

383 }

384

GO! | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 381

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- GO.sol

Locations

380 super._transfer(address(msg.sender), holders[i], amounts[i]);

381 airdropAmount[holders[i]] += amounts[i];

382 }

383 }

384

385

GO! | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 381

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- GO.sol

Locations

380 super._transfer(address(msg.sender), holders[i], amounts[i]);

381 airdropAmount[holders[i]] += amounts[i];

382 }

383 }

384

385

GO! | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 590

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- GO.sol

Locations

589 address[] memory path = new address[](2);

590 path[0] = address(this);

591 path[1] = router.WETH();

592 _approve(address(this), address(router), tokenAmount);

593 router.swapExactTokensForETHSupportingFeeOnTransferTokens(

594

GO! | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 591

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- GO.sol

Locations

590 path[0] = address(this);

591 path[1] = router.WETH();

592 _approve(address(this), address(router), tokenAmount);

593 router.swapExactTokensForETHSupportingFeeOnTransferTokens(

594 tokenAmount,

595

GO! | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

GO! | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

