
Flokimooni

Smart Contract
Audit Report

14 Oct 2021



Flokimooni | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



Flokimooni | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Flokimooni Flokim Binance Smart Chain

| Addresses

Contract address 0x0f5351b9eaefd6687dff143de6ea5d01cb9c1205

Contract deployer address 0x069fD156c0d22E5D5F68e92f3237624B8eB6Ae9C

| Project Website

http://www.flokimooni.com/ 

| Codebase

https://bscscan.com/address/0x0f5351b9eaefd6687dff143de6ea5d01cb9c1205#code 

http://www.flokimooni.com/
https://bscscan.com/address/0x0f5351b9eaefd6687dff143de6ea5d01cb9c1205#code


Flokimooni | Security Analysis

SUMMARY

Flokimooni is named after Elon Musk’s Shiba Inu. Born by fans and members of the Shiba Inu community,
Flokimooni spread like a movement. Creating a beautiful ecosystem with the most modern features in the
crypto space: MooniWorld. By combining the power of memes with real utility, Flokimooni aims to be a top 100
crypto project and plans to kickstart the next crypto revolution. We call our community the Flokimoonies. With
the power of our dedicated team and loyal holders, Flokimooni can compete with any of the top tokens on the
market.

| Contract Summary

Documentation Quality

Flokimooni provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Flokimooni with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 138, 150, 163, 164, 175, 185, 199, 216, 231, 232, 250, 267, 285, 305, 325, 1005, 1017, 1030, 1031,
1042, 1052, 1066, 1083, 1098, 1099, 1117, 1134, 1152, 1172, 1192, 2060, 2064, 2076, 2083, 2092, 2183,
2314, 2349, 2411, 2564, 2659, 2853, 3161, 3171, 3175 and 2183.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 2230.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 2154, 2184, 2189, 2552, 2552, 2555, 2556, 2558, 2569, 2579, 2583,
2587, 2594, 2595, 2660, 2912, 2913, 2929, 2930, 2931 and 3167.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 2789 and
2873.



Flokimooni | Security Analysis

CONCLUSION

We have audited the Flokimooni project released on January 2023 to discover issues and identify potential
security vulnerabilities in Flokimooni Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Flokimooni smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, tx.origin as a part of authorization control, and out-of-bounds array
access which the index access expression can cause an exception in case of the use of an invalid array index
value. Use of "tx.origin" as a part of authorization control, using "tx.origin" as a security control can lead to
authorization bypass vulnerabilities. Consider using "msg.sender" unless you really know what you are doing.



Flokimooni | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



Flokimooni | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS



Flokimooni | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS



Flokimooni | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Oct 13 2021 14:38:29 GMT+0000 (Coordinated Universal Time)

Finished Thursday Oct 14 2021 15:24:12 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File AntiBotBABYTOKEN.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged



SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

137   function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

138   uint256 c = a + b;

139   if (c < a) return (false, 0);

140   return (true, c);

141   }

142   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 150

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

149   if (b > a) return (false, 0);

150   return (true, a - b);

151   }

152   

153   /**

154   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 163

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

162   if (a == 0) return (true, 0);

163   uint256 c = a * b;

164   if (c / a != b) return (false, 0);

165   return (true, c);

166   }

167   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 164

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

163   uint256 c = a * b;

164   if (c / a != b) return (false, 0);

165   return (true, c);

166   }

167   

168   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 175

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

174   if (b == 0) return (false, 0);

175   return (true, a / b);

176   }

177   

178   /**

179   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 185

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

184   if (b == 0) return (false, 0);

185   return (true, a % b);

186   }

187   

188   /**

189   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 199

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

198   function add(uint256 a, uint256 b) internal pure returns (uint256) {

199   uint256 c = a + b;

200   require(c >= a, "SafeMath: addition overflow");

201   return c;

202   }

203   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 216

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

215   require(b <= a, "SafeMath: subtraction overflow");

216   return a - b;

217   }

218   

219   /**

220   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

230   if (a == 0) return 0;

231   uint256 c = a * b;

232   require(c / a == b, "SafeMath: multiplication overflow");

233   return c;

234   }

235   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 232

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

231   uint256 c = a * b;

232   require(c / a == b, "SafeMath: multiplication overflow");

233   return c;

234   }

235   

236   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 250

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

249   require(b > 0, "SafeMath: division by zero");

250   return a / b;

251   }

252   

253   /**

254   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

266   require(b > 0, "SafeMath: modulo by zero");

267   return a % b;

268   }

269   

270   /**

271   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 285

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

284   require(b <= a, errorMessage);

285   return a - b;

286   }

287   

288   /**

289   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

304   require(b > 0, errorMessage);

305   return a / b;

306   }

307   

308   /**

309   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

324   require(b > 0, errorMessage);

325   return a % b;

326   }

327   }

328   

329   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1005

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1004   function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

1005   uint256 c = a + b;

1006   if (c < a) return (false, 0);

1007   return (true, c);

1008   }

1009   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1017

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1016   if (b > a) return (false, 0);

1017   return (true, a - b);

1018   }

1019   

1020   /**

1021   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1030

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1029   if (a == 0) return (true, 0);

1030   uint256 c = a * b;

1031   if (c / a != b) return (false, 0);

1032   return (true, c);

1033   }

1034   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1031

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1030   uint256 c = a * b;

1031   if (c / a != b) return (false, 0);

1032   return (true, c);

1033   }

1034   

1035   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1042

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1041   if (b == 0) return (false, 0);

1042   return (true, a / b);

1043   }

1044   

1045   /**

1046   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1052

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1051   if (b == 0) return (false, 0);

1052   return (true, a % b);

1053   }

1054   

1055   /**

1056   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1066

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1065   function add(uint256 a, uint256 b) internal pure returns (uint256) {

1066   uint256 c = a + b;

1067   require(c >= a, "SafeMath: addition overflow");

1068   return c;

1069   }

1070   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1083

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1082   require(b <= a, "SafeMath: subtraction overflow");

1083   return a - b;

1084   }

1085   

1086   /**

1087   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1098

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1097   if (a == 0) return 0;

1098   uint256 c = a * b;

1099   require(c / a == b, "SafeMath: multiplication overflow");

1100   return c;

1101   }

1102   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1099

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1098   uint256 c = a * b;

1099   require(c / a == b, "SafeMath: multiplication overflow");

1100   return c;

1101   }

1102   

1103   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1117

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1116   require(b > 0, "SafeMath: division by zero");

1117   return a / b;

1118   }

1119   

1120   /**

1121   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1133   require(b > 0, "SafeMath: modulo by zero");

1134   return a % b;

1135   }

1136   

1137   /**

1138   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1152

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1151   require(b <= a, errorMessage);

1152   return a - b;

1153   }

1154   

1155   /**

1156   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1172

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1171   require(b > 0, errorMessage);

1172   return a / b;

1173   }

1174   

1175   /**

1176   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1192

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

1191   require(b > 0, errorMessage);

1192   return a % b;

1193   }

1194   }

1195   

1196   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2060

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2059   function mul(int256 a, int256 b) internal pure returns (int256) {

2060   int256 c = a * b;

2061   

2062   // Detect overflow when multiplying MIN_INT256 with -1

2063   require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

2064   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2064

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2063   require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

2064   require((b == 0) || (c / b == a));

2065   return c;

2066   }

2067   

2068   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2076

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2075   // Solidity already throws when dividing by 0.

2076   return a / b;

2077   }

2078   

2079   /**

2080   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2083

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2082   function sub(int256 a, int256 b) internal pure returns (int256) {

2083   int256 c = a - b;

2084   require((b >= 0 && c <= a) || (b < 0 && c > a));

2085   return c;

2086   }

2087   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2092

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2091   function add(int256 a, int256 b) internal pure returns (int256) {

2092   int256 c = a + b;

2093   require((b >= 0 && c >= a) || (b < 0 && c < a));

2094   return c;

2095   }

2096   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2182   uint index = map.indexOf[key];

2183   uint lastIndex = map.keys.length - 1;

2184   address lastKey = map.keys[lastIndex];

2185   

2186   map.indexOf[lastKey] = index;

2187   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2314

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2313   //  see https://github.com/ethereum/EIPs/issues/1726#issuecomment-472352728

2314   uint256 internal constant magnitude = 2**128;

2315   

2316   uint256 internal magnifiedDividendPerShare;

2317   

2318   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2349

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2348   magnifiedDividendPerShare = magnifiedDividendPerShare.add(

2349   (amount).mul(magnitude) / totalSupply()

2350   );

2351   emit DividendsDistributed(msg.sender, amount);

2352   

2353   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2410   return

2411   magnifiedDividendPerShare

2412   .mul(balanceOf(_owner))

2413   .toInt256Safe()

2414   .add(magnifiedDividendCorrections[_owner])

2415   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 2564

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2563   require(totalFees <= 100, "Total fee is over 100%");

2564   swapTokensAtAmount = totalSupply_.mul(2).div(10**6); // 0.002%

2565   

2566   dividendTracker = BABYTOKENDividendTracker(payable(Clones.clone(implementation)));

2567   dividendTracker.initialize(rewardToken, minimumTokenBalanceForDividends_);

2568   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 2659

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2658   {

2659   for (uint256 i = 0; i < accounts.length; i++) {

2660   _isExcludedFromFees[accounts[i]] = excluded;

2661   }

2662   

2663   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 2853

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2852   if (automatedMarketMakerPairs[to]) {

2853   fees += amount.mul(1).div(100);

2854   }

2855   amount = amount.sub(fees);

2856   

2857   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 3161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

3160   while (gasUsed < gas && iterations < numberOfTokenHolders) {

3161   _lastProcessedIndex++;

3162   

3163   if (_lastProcessedIndex >= tokenHoldersMap.keys.length) {

3164   _lastProcessedIndex = 0;

3165   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 3171

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

3170   if (processAccount(payable(account), true)) {

3171   claims++;

3172   }

3173   }

3174   

3175   



Flokimooni | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 3175

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

3174   

3175   iterations++;

3176   

3177   uint256 newGasLeft = gasleft();

3178   

3179   



Flokimooni | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2182   uint index = map.indexOf[key];

2183   uint lastIndex = map.keys.length - 1;

2184   address lastKey = map.keys[lastIndex];

2185   

2186   map.indexOf[lastKey] = index;

2187   



Flokimooni | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 2230

low SEVERITY
The current pragma Solidity directive is ""^0.7.6"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2229   

2230   pragma solidity ^0.7.6;

2231   

2232   // import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

2233   // import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";

2234   



Flokimooni | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2789

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2788   (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) = 

dividendTracker.process(gas);

2789   emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas, 

tx.origin);

2790   }

2791   

2792   function claim() external {

2793   



Flokimooni | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 2873

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2872   ) {

2873   emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas, 

tx.origin);

2874   } catch {}

2875   }

2876   }

2877   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2154

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2153   function getKeyAtIndex(Map storage map, uint index) public view returns (address) 

{

2154   return map.keys[index];

2155   }

2156   

2157   

2158   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2184

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2183   uint lastIndex = map.keys.length - 1;

2184   address lastKey = map.keys[lastIndex];

2185   

2186   map.indexOf[lastKey] = index;

2187   delete map.indexOf[key];

2188   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2189

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2188   

2189   map.keys[index] = lastKey;

2190   map.keys.pop();

2191   }

2192   }

2193   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2552

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2551   ) external override initializer {

2552   require(addrs[0] != addrs[3], "Owner and marketing wallet cannot be the same");

2553   __ERC20_init(name_, symbol_);

2554   __Ownable_init();

2555   pinkAntiBot = IPinkAntiBot(addrs[4]);

2556   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2552

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2551   ) external override initializer {

2552   require(addrs[0] != addrs[3], "Owner and marketing wallet cannot be the same");

2553   __ERC20_init(name_, symbol_);

2554   __Ownable_init();

2555   pinkAntiBot = IPinkAntiBot(addrs[4]);

2556   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2555

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2554   __Ownable_init();

2555   pinkAntiBot = IPinkAntiBot(addrs[4]);

2556   pinkAntiBot.setTokenOwner(addrs[0]);

2557   enableAntiBot = true;

2558   rewardToken = addrs[1];

2559   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2556

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2555   pinkAntiBot = IPinkAntiBot(addrs[4]);

2556   pinkAntiBot.setTokenOwner(addrs[0]);

2557   enableAntiBot = true;

2558   rewardToken = addrs[1];

2559   tokenRewardsFee = tokenRewardsFee_;

2560   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2558

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2557   enableAntiBot = true;

2558   rewardToken = addrs[1];

2559   tokenRewardsFee = tokenRewardsFee_;

2560   liquidityFee = liquidityFee_;

2561   marketingFee = marketingFee_;

2562   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2569

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2568   

2569   IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(addrs[2]);

2570   // Create a uniswap pair for this new token

2571   address _uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory()).createPair(

2572   address(this),

2573   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2579

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2578   

2579   _marketingWalletAddress = addrs[3];

2580   // exclude from receiving dividends

2581   dividendTracker.excludeFromDividends(address(dividendTracker));

2582   dividendTracker.excludeFromDividends(address(this));

2583   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2583

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2582   dividendTracker.excludeFromDividends(address(this));

2583   dividendTracker.excludeFromDividends(addrs[0]);

2584   dividendTracker.excludeFromDividends(address(0xdead));

2585   dividendTracker.excludeFromDividends(address(_uniswapV2Router));

2586   // exclude from paying fees or having max transaction amount

2587   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2587

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2586   // exclude from paying fees or having max transaction amount

2587   excludeFromFees(addrs[0], true);

2588   excludeFromFees(_marketingWalletAddress, true);

2589   excludeFromFees(address(this), true);

2590   /*

2591   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2594

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2593   */

2594   _mint(addrs[0], totalSupply_);

2595   transferOwnership(addrs[0]);

2596   }

2597   

2598   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2595

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2594   _mint(addrs[0], totalSupply_);

2595   transferOwnership(addrs[0]);

2596   }

2597   

2598   function setEnableAntiBot(bool _enable) external onlyOwner {

2599   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2660

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2659   for (uint256 i = 0; i < accounts.length; i++) {

2660   _isExcludedFromFees[accounts[i]] = excluded;

2661   }

2662   

2663   emit ExcludeMultipleAccountsFromFees(accounts, excluded);

2664   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2912

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2911   address[] memory path = new address[](2);

2912   path[0] = address(this);

2913   path[1] = uniswapV2Router.WETH();

2914   

2915   _approve(address(this), address(uniswapV2Router), tokenAmount);

2916   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2913

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2912   path[0] = address(this);

2913   path[1] = uniswapV2Router.WETH();

2914   

2915   _approve(address(this), address(uniswapV2Router), tokenAmount);

2916   

2917   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2929

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2928   address[] memory path = new address[](3);

2929   path[0] = address(this);

2930   path[1] = uniswapV2Router.WETH();

2931   path[2] = rewardToken;

2932   

2933   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2930

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2929   path[0] = address(this);

2930   path[1] = uniswapV2Router.WETH();

2931   path[2] = rewardToken;

2932   

2933   _approve(address(this), address(uniswapV2Router), tokenAmount);

2934   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2931

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

2930   path[1] = uniswapV2Router.WETH();

2931   path[2] = rewardToken;

2932   

2933   _approve(address(this), address(uniswapV2Router), tokenAmount);

2934   

2935   



Flokimooni | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 3167

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- AntiBotBABYTOKEN.sol 

Locations

3166   

3167   address account = tokenHoldersMap.keys[_lastProcessedIndex];

3168   

3169   if (canAutoClaim(lastClaimTimes[account])) {

3170   if (processAccount(payable(account), true)) {

3171   



Flokimooni | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



Flokimooni | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


