
Alcazar

Smart Contract
Audit Report

25 Oct 2022

Alcazar | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Alcazar | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Alcazar ALCAZAR Ethereum

| Addresses

Contract address 0x10f44a834097469ac340592d28c479c442e99bfe

Contract deployer address 0x2FF9d7be466f674c8640466A55fFdd02b3a00864

| Project Website

https://alcazar.world/

| Codebase

https://etherscan.io/address/0x10f44a834097469ac340592d28c479c442e99bfe#code

https://alcazar.world/
https://etherscan.io/address/0x10f44a834097469ac340592d28c479c442e99bfe#code

Alcazar | Security Analysis

SUMMARY

Alcazar is building a next generation dApp with the purpose of making it possible for Alcazar to raffle away
many high quality luxurious items in between holders. The raffles consist of items such as high-end luxury
watches, vehicles, tickets to different events and high amounts of other tokens.

| Contract Summary

Documentation Quality

Alcazar provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Alcazar with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 978, 982 and 990.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 250, 282, 305, 306, 341, 377, 947, 947, 948, 948, 951, 951, 952, 952, 1013, 1014, 1017, 1147, 1154,
1162 and 1236.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1237, 1238, 1356, 1357, 1386 and 1387.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1118.

Alcazar | Security Analysis

CONCLUSION

We have audited the Alcazar project released on October 2022 to discover issues and identify potential
security vulnerabilities in Alcazar Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Alcazar smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, State variable visibility is not set, Potential use of "block.number" as a source of randomness,
and out-of-bounds array access which the index access expression can cause an exception in case of the use
of an invalid array index value.

Alcazar | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Alcazar | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Alcazar | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Alcazar | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Oct 24 2022 04:10:16 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Oct 25 2022 12:34:50 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Alcazar.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 250

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

249 function add(uint256 a, uint256 b) internal pure returns (uint256) {

250 uint256 c = a + b;

251 require(c >= a, "SafeMath: addition overflow");

252

253 return c;

254

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 282

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

281 require(b <= a, errorMessage);

282 uint256 c = a - b;

283

284 return c;

285 }

286

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

304

305 uint256 c = a * b;

306 require(c / a == b, "SafeMath: multiplication overflow");

307

308 return c;

309

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 306

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

305 uint256 c = a * b;

306 require(c / a == b, "SafeMath: multiplication overflow");

307

308 return c;

309 }

310

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 341

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

340 require(b > 0, errorMessage);

341 uint256 c = a / b;

342 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

343

344 return c;

345

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 377

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

376 require(b != 0, errorMessage);

377 return a % b;

378 }

379 }

380

381

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 947

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

946 // Supply

947 uint256 private _totalSupply = 1 * 1e9 * 1e18;

948 uint256 private minimumTokensBeforeSwap = _totalSupply * 25 / 100000;

949

950 // Restrictions

951

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 947

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

946 // Supply

947 uint256 private _totalSupply = 1 * 1e9 * 1e18;

948 uint256 private minimumTokensBeforeSwap = _totalSupply * 25 / 100000;

949

950 // Restrictions

951

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 948

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

947 uint256 private _totalSupply = 1 * 1e9 * 1e18;

948 uint256 private minimumTokensBeforeSwap = _totalSupply * 25 / 100000;

949

950 // Restrictions

951 uint256 public _maxTxAmount = (_totalSupply * 8) / 1000;

952

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 948

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

947 uint256 private _totalSupply = 1 * 1e9 * 1e18;

948 uint256 private minimumTokensBeforeSwap = _totalSupply * 25 / 100000;

949

950 // Restrictions

951 uint256 public _maxTxAmount = (_totalSupply * 8) / 1000;

952

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 951

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

950 // Restrictions

951 uint256 public _maxTxAmount = (_totalSupply * 8) / 1000;

952 uint256 public _walletMax = (_totalSupply * 8) / 1000;

953 bool public checkWalletLimit = true;

954

955

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 951

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

950 // Restrictions

951 uint256 public _maxTxAmount = (_totalSupply * 8) / 1000;

952 uint256 public _walletMax = (_totalSupply * 8) / 1000;

953 bool public checkWalletLimit = true;

954

955

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 952

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

951 uint256 public _maxTxAmount = (_totalSupply * 8) / 1000;

952 uint256 public _walletMax = (_totalSupply * 8) / 1000;

953 bool public checkWalletLimit = true;

954

955 // wallets

956

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 952

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

951 uint256 public _maxTxAmount = (_totalSupply * 8) / 1000;

952 uint256 public _walletMax = (_totalSupply * 8) / 1000;

953 bool public checkWalletLimit = true;

954

955 // wallets

956

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1013

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

1012 // load total fees

1013 totalFeesBuy = operationsFeeBuy + liquidityFeeBuy;

1014 totalFeesSell = operationsFeeSell + liquidityFeeSell;

1015

1016 // load total distribution

1017

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1014

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

1013 totalFeesBuy = operationsFeeBuy + liquidityFeeBuy;

1014 totalFeesSell = operationsFeeSell + liquidityFeeSell;

1015

1016 // load total distribution

1017 _totalDistributionShares = _liquiditySharePercentage + _operationsSharePercentage;

1018

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1017

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

1016 // load total distribution

1017 _totalDistributionShares = _liquiditySharePercentage + _operationsSharePercentage;

1018

1019 // create router ------------------------------

1020 IUniswapV2Router02 _uniswapV2Router;

1021

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

1146 liquidityFeeBuy = _liquidityFee;

1147 totalFeesBuy = operationsFeeBuy + liquidityFeeBuy;

1148 require(totalFeesBuy <= maxTotalFeeBuy, "Must keep fees at maxTotalFeeBuy or

less");

1149 }

1150

1151

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1154

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

1153 liquidityFeeSell = _liquidityFee;

1154 totalFeesSell = operationsFeeSell + liquidityFeeSell;

1155 require(totalFeesSell <= maxTotalFeeSell, "Must keep fees at maxTotalFeeSell or

less");

1156 }

1157

1158

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1162

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

1161 _operationsSharePercentage = newOperationsShare;

1162 _totalDistributionShares = _liquiditySharePercentage + _operationsSharePercentage;

1163 require(_totalDistributionShares == 100, "Distribution needs to total to 100");

1164 }

1165

1166

Alcazar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1236

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Alcazar.sol

Locations

1235 require(airdropWallets.length == amount.length, "airdropToWallets:: Arrays must be

the same length");

1236 for(uint256 i = 0; i < airdropWallets.length; i++){

1237 address wallet = airdropWallets[i];

1238 uint256 airdropAmount = amount[i];

1239 emit Transfer(msg.sender, wallet, airdropAmount);

1240

Alcazar | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 978

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- Alcazar.sol

Locations

977 // max amounts

978 mapping (address => uint256) _balances;

979 mapping (address => mapping (address => uint256)) private _allowances;

980 mapping (address => bool) public isExcludedFromFee;

981 mapping (address => bool) public isWalletLimitExempt;

982

Alcazar | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 982

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTxLimitExempt" is
internal. Other possible visibility settings are public and private.

Source File
- Alcazar.sol

Locations

981 mapping (address => bool) public isWalletLimitExempt;

982 mapping (address => bool) isTxLimitExempt;

983

984 // Router Information

985 mapping (address => bool) public isMarketPair;

986

Alcazar | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 990

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- Alcazar.sol

Locations

989 // toggle swap back (fees)

990 bool inSwapAndLiquify;

991 uint256 public tokensForLiquidity;

992 uint256 public tokensForOperations;

993

994

Alcazar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1237

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Alcazar.sol

Locations

1236 for(uint256 i = 0; i < airdropWallets.length; i++){

1237 address wallet = airdropWallets[i];

1238 uint256 airdropAmount = amount[i];

1239 emit Transfer(msg.sender, wallet, airdropAmount);

1240 }

1241

Alcazar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1238

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Alcazar.sol

Locations

1237 address wallet = airdropWallets[i];

1238 uint256 airdropAmount = amount[i];

1239 emit Transfer(msg.sender, wallet, airdropAmount);

1240 }

1241 }

1242

Alcazar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1356

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Alcazar.sol

Locations

1355 address[] memory path = new address[](2);

1356 path[0] = address(this);

1357 path[1] = uniswapV2Router.WETH();

1358 _approve(address(this), address(uniswapV2Router), tokenAmount);

1359 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1360

Alcazar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1357

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Alcazar.sol

Locations

1356 path[0] = address(this);

1357 path[1] = uniswapV2Router.WETH();

1358 _approve(address(this), address(uniswapV2Router), tokenAmount);

1359 uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(

1360 tokenAmount,

1361

Alcazar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1386

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Alcazar.sol

Locations

1385 address[] memory path = new address[](2);

1386 path[0] = uniswapV2Router.WETH();

1387 path[1] = address(this);

1388

1389 // make the swap

1390

Alcazar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1387

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Alcazar.sol

Locations

1386 path[0] = uniswapV2Router.WETH();

1387 path[1] = address(this);

1388

1389 // make the swap

1390 uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value:

ETHAmountInWei}(

1391

Alcazar | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1118

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Alcazar.sol

Locations

1117 function getBlock()public view returns (uint256) {

1118 return block.number;

1119 }

1120

1121 // @dev Owner functions start -------------------------------------

1122

Alcazar | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Alcazar | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

