
Poject Dreams

Smart Contract
Audit Report

07 Jan 2023

Poject Dreams | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Poject Dreams | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Project Dreams PRO BSC

| Addresses

Contract address 0x83e575d69397541Cf89f80758eeE63bdA8345Bf6

Contract deployer address 0xaD7f4232371416FdFD8f7E5D1C43E2B90CdB50cA

| Project Website

https://projectdreams.net/

| Codebase

https://bscscan.com/address/0x83e575d69397541Cf89f80758eeE63bdA8345Bf6#code

https://projectdreams.net/
https://bscscan.com/address/0x83e575d69397541Cf89f80758eeE63bdA8345Bf6#code

Poject Dreams | Security Analysis

SUMMARY

Project Dreams Token ($PRO) is an auto liquidity and auto BUSD rewarding BEP20 token. A percent of all buys
and sells will auto-generate liquidity and also send BUSD rewards to Project Dreams token holders.

| Contract Summary

Documentation Quality

The amount of documentation in this project is GOOD.

The technical description is provided.

Code Quality

The Overall quality of the code is GOOD

The official Solidity style guide is followed.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation discovered on lines 23, 32, 42, 43, 51, 58, 63, 67, 71, 75, 79, 85, 92, 99,
266, 269, 353, 354, 359, 401, 402, 421, 469, 575, 581, 655, 701, 718 and 749.
SWC-101 | Compiler-rewritable " - 1" discovered on lines 401 and 402.
SWC-103 | A floating pragma is set on line 12, The current pragma Solidity directive is ""^0.8.0"".
SWC-108 | State variable visibility is not set on lines 244, 252, 253, 254, 256, 257, 258, 271, 273, 411, 413,
414, 415, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 435, 436, 441, 442, 450, 451, 452, 453, 456,
457, 458, 459, 460, 461, 463, 466 and 470. It is best practice to set the visibility of state variables
explicitly to public or private.
SWC-110 | Out of bounds array access on lines 316, 317, 347, 348, 401, 402, 613, 614, 680 and 681.
SWC-120 | Potential use of "block.number" as source of randomness on lines 575, 655, 673, 697 and
713.

Poject Dreams | Security Analysis

CONCLUSION

This report has been prepared for Project Dreams to discover issues and vulnerabilities in the source code of
the Project Dreams project as well as any contract dependencies that were not part of an officially recognized
library.

The security assessment resulted in findings that ranged from critical to informational.

Most issues found were low severity and any critical issue such as High Vulnerability was not found. Except for
all other issues that were of negligible importance and mostly referred to coding standards and inefficiencies
such as an arithmetic operation, a floating pragma, state variable visibility, and the use of "block.number" as a
source of randomness.

Poject Dreams | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Poject Dreams | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Poject Dreams | Security Analysis

SMART CONTRACT ANALYSIS

Started Mon Jan 30 2023 02:35:23 GMT+0000 (Coordinated Universal Time)

Finished Mon Jan 30 2023 02:35:32 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File pro.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS

low acknowledged

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 71

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

70 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

71 return a * b;

72 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 75

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

74 function div(uint256 a, uint256 b) internal pure returns (uint256) {

75 return a / b;

76 }

77 |

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 85

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

84 require(b <= a, errorMessage);

85 return a - b;

86 }

87 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 92

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

91 require(b > 0, errorMessage);

92 return a / b;

93 }

94 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 99

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

98 require(b > 0, errorMessage);

99 return a % b;

100 }

101 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 266

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

265 uint256 public dividendsPerShare;

266 uint256 public dividendsPerShareAccuracyFactor = 10 ** 36;

267 uint256 public minPeriod = 1 hours;

268 |

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 269

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

268 uint256 public minPeriod = 1 hours;

269 uint256 public minDistribution = 1 * (10 ** 18);

270 uint256 currentIndex;

271 |

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 269

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

268 uint256 public minPeriod = 1 hours;

269 uint256 public minDistribution = 1 * (10 ** 18);

270 uint256 currentIndex;

271 |

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

352 gasLeft = gasleft();

353 currentIndex++;

354 iterations++;

355 }

356 |

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

353 currentIndex++;

354 iterations++;

355 }

356 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 359

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

358 function shouldDistribute(address shareholder) internal view returns (bool) {

359 return shareholderClaims[shareholder] + minPeriod < block.timestamp

360 && getUnpaidEarnings(shareholder) > minDistribution;

361 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 401

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

400 function removeShareholder(address shareholder) internal {

401 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

402 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

403 shareholders.pop();

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

401 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

402 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

403 shareholders.pop();

404 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 421

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

420 uint8 constant _decimals = 18;

421 uint256 _totalSupply = 1_000_000_000_000_000 * (10 ** _decimals);

422 uint256 public _maxTxAmount = _totalSupply.div(100); // 1%

423 |

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 421

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

420 uint8 constant _decimals = 18;

421 uint256 _totalSupply = 1_000_000_000_000_000 * (10 ** _decimals);

422 uint256 public _maxTxAmount = _totalSupply.div(100); // 1%

423 |

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 469

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

468 bool public swapEnabled = true;

469 uint256 public swapThreshold = _totalSupply / 2000; // 0.005%

470 bool inSwap;

471 modifier swapping() { inSwap = true; _; inSwap = false; }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 575

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

574 function getTotalFee(bool selling) public view returns (uint256) {

575 if(launchedAt + 1 >= block.number){ return feeDenominator.sub(1); }

576 if(selling){ return getMultipliedFee(); }

577 return totalFee;

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 581

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

580 function getMultipliedFee() public view returns (uint256) {

581 if (launchedAtTimestamp + 1 days > block.timestamp) {

582 return totalFee.mul(18000).div(feeDenominator);

583 } else if (buybackMultiplierTriggeredAt.add(buybackMultiplierLength) >

block.timestamp) {

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 655

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

654 && autoBuybackEnabled

655 && autoBuybackBlockLast + autoBuybackBlockPeriod <= block.number // After N blocks

from last buyback

656 && address(this).balance >= autoBuybackAmount;

657 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 701

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

700 function setBuybackMultiplierSettings(uint256 numerator, uint256 denominator,

uint256 length) external authorized {

701 require(numerator / denominator <= 2 && numerator > denominator);

702 buybackMultiplierNumerator = numerator;

703 buybackMultiplierDenominator = denominator;

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 718

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

717 function setTxLimit(uint256 amount) external authorized {

718 require(amount >= _totalSupply / 1000);

719 _maxTxAmount = amount;

720 }

Poject Dreams | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 749

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

748 require(totalFee <= 2500, "Total fees must be less than or equal to 25%");

749 require(totalFee < feeDenominator/4);

750 }

751 |

Poject Dreams | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 401

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

400 function removeShareholder(address shareholder) internal {

401 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

402 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

403 shareholders.pop();

Poject Dreams | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- pro.sol

Locations

401 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

402 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

403 shareholders.pop();

404 }

Poject Dreams | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- pro.sol

Locations

10 //SPDX-License-Identifier: MIT

11 pragma solidity ^0.8.0;

12 |

13 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 244

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_token" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

243 using SafeMath for uint256;

244 address _token;

245 struct Share {

246 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 252

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "BUSD" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

251 }

252 IBEP20 BUSD = IBEP20(0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56);

253 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

254 IDEXRouter router;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 253

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "WBNB" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

252 IBEP20 BUSD = IBEP20(0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56);

253 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

254 IDEXRouter router;

255 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 254

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "router" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

253 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

254 IDEXRouter router;

255 address[] shareholders;

256 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 256

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholders" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

255 IDEXRouter router;

256 address[] shareholders;

257 mapping (address => uint256) shareholderIndexes;

258 mapping (address => uint256) shareholderClaims;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 257

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholderIndexes"
is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

256 address[] shareholders;

257 mapping (address => uint256) shareholderIndexes;

258 mapping (address => uint256) shareholderClaims;

259 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 258

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholderClaims" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

257 mapping (address => uint256) shareholderIndexes;

258 mapping (address => uint256) shareholderClaims;

259 mapping (address => Share) public shares;

260 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 271

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "currentIndex" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

270 uint256 public minDistribution = 1 * (10 ** 18);

271 uint256 currentIndex;

272 bool initialized;

273 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 273

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "initialized" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

272 uint256 currentIndex;

273 bool initialized;

274 modifier initialization() {

275 require(!initialized);

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 411

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "BUSD" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

410 uint256 public constant MASK = type(uint128).max;

411 address BUSD = 0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56;

412 address public WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

413 address DEAD = 0x000000000000000000000000000000000000dEaD;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 413

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "DEAD" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

412 address public WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

413 address DEAD = 0x000000000000000000000000000000000000dEaD;

414 address ZERO = 0x00;

415 address DEAD_NON_CHECKSUM = 0x000000000000000000000000000000000000dEaD;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 414

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ZERO" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

413 address DEAD = 0x000000000000000000000000000000000000dEaD;

414 address ZERO = 0x00;

415 address DEAD_NON_CHECKSUM = 0x000000000000000000000000000000000000dEaD;

416 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 415

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

414 uint8 constant _decimals = 18;

415 uint256 _totalSupply = 1_000_000_000_000_000 * (10 ** _decimals);

416 uint256 public _maxTxAmount = _totalSupply.div(100); // 1%

417 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 424

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

423 uint256 public _maxTxAmount = _totalSupply.div(100); // 1%

424 mapping (address => uint256) _balances;

425 mapping (address => mapping (address => uint256)) _allowances;

426 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 425

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

424 mapping (address => uint256) _balances;

425 mapping (address => mapping (address => uint256)) _allowances;

426 mapping (address => bool) isFeeExempt;

427 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 427

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isFeeExempt" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

426 mapping (address => mapping (address => uint256)) _allowances;

427 mapping (address => bool) isFeeExempt;

428 mapping (address => bool) isTxLimitExempt;

429 mapping (address => bool) isDividendExempt;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 428

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTxLimitExempt" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

427 mapping (address => bool) isFeeExempt;

428 mapping (address => bool) isTxLimitExempt;

429 mapping (address => bool) isDividendExempt;

430 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 429

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isDividendExempt" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

428 mapping (address => bool) isTxLimitExempt;

429 mapping (address => bool) isDividendExempt;

430 uint256 liquidityFee = 200;

431 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 431

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "liquidityFee" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

430 mapping (address => bool) isDividendExempt;

431 uint256 liquidityFee = 200;

432 uint256 buybackFee = 100;

433 uint256 reflectionFee = 100;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 432

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "buybackFee" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

431 uint256 liquidityFee = 200;

432 uint256 buybackFee = 100;

433 uint256 reflectionFee = 100;

434 uint256 marketingFee = 200;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 433

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "reflectionFee" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

432 uint256 buybackFee = 100;

433 uint256 reflectionFee = 100;

434 uint256 marketingFee = 200;

435 uint256 totalFee = 600;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 434

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingFee" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

433 uint256 reflectionFee = 100;

434 uint256 marketingFee = 200;

435 uint256 totalFee = 600;

436 uint256 feeDenominator = 10000;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 435

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "totalFee" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

434 uint256 marketingFee = 200;

435 uint256 totalFee = 600;

436 uint256 feeDenominator = 10000;

437 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 436

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "feeDenominator" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

435 uint256 totalFee = 600;

436 uint256 feeDenominator = 10000;

437 address public autoLiquidityReceiver;

438 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 441

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "targetLiquidity" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

440 address public marketingFeeReceiver;

441 uint256 targetLiquidity = 25;

442 uint256 targetLiquidityDenominator = 100;

443 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 450

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierNumerator" is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

449 uint256 public launchedAtTimestamp;

450 uint256 buybackMultiplierNumerator = 200;

451 uint256 buybackMultiplierDenominator = 100;

452 uint256 buybackMultiplierTriggeredAt;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 451

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierDenominator" is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

450 uint256 buybackMultiplierNumerator = 200;

451 uint256 buybackMultiplierDenominator = 100;

452 uint256 buybackMultiplierTriggeredAt;

453 uint256 buybackMultiplierLength = 30 minutes;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 452

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierTriggeredAt" is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

451 uint256 buybackMultiplierDenominator = 100;

452 uint256 buybackMultiplierTriggeredAt;

453 uint256 buybackMultiplierLength = 30 minutes;

454 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 453

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"buybackMultiplierLength" is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

452 uint256 buybackMultiplierTriggeredAt;

453 uint256 buybackMultiplierLength = 30 minutes;

454 bool public autoBuybackEnabled = false;

455 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 456

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "buyBacker" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

455 bool public autoBuybackEnabled = false;

456 mapping (address => bool) buyBacker;

457 uint256 autoBuybackCap;

458 uint256 autoBuybackAccumulator;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 457

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "autoBuybackCap" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

456 mapping (address => bool) buyBacker;

457 uint256 autoBuybackCap;

458 uint256 autoBuybackAccumulator;

459 uint256 autoBuybackAmount;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 458

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"autoBuybackAccumulator" is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

457 uint256 autoBuybackCap;

458 uint256 autoBuybackAccumulator;

459 uint256 autoBuybackAmount;

460 uint256 autoBuybackBlockPeriod;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 459

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "autoBuybackAmount"
is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

458 uint256 autoBuybackAccumulator;

459 uint256 autoBuybackAmount;

460 uint256 autoBuybackBlockPeriod;

461 uint256 autoBuybackBlockLast;

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 460

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"autoBuybackBlockPeriod" is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

459 uint256 autoBuybackAmount;

460 uint256 autoBuybackBlockPeriod;

461 uint256 autoBuybackBlockLast;

462 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 461

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"autoBuybackBlockLast" is internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

460 uint256 autoBuybackBlockPeriod;

461 uint256 autoBuybackBlockLast;

462 DividendDistributor distributor;

463 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 463

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "distributor" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

462 uint256 autoBuybackBlockLast;

463 DividendDistributor distributor;

464 address public distributorAddress;

465 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 466

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "distributorGas" is
internal. Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

465 address public distributorAddress;

466 uint256 distributorGas = 500000;

467 bool public swapEnabled = true;

468 |

Poject Dreams | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET
LINE 470

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- pro.sol

Locations

469 uint256 public swapThreshold = _totalSupply / 2000; // 0.005%

470 bool inSwap;

471 modifier swapping() { inSwap = true; _; inSwap = false; }

472 |

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 316

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

315 address[] memory path = new address[](2);

316 path[0] = WBNB;

317 path[1] = address(BUSD);

318 |

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 317

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

316 path[0] = WBNB;

317 path[1] = address(BUSD);

318 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: msg.value}(

319 |

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 347

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

346 }

347 if(shouldDistribute(shareholders[currentIndex])){

348 distributeDividend(shareholders[currentIndex]);

349 }

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 348

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

347 if(shouldDistribute(shareholders[currentIndex])){

348 distributeDividend(shareholders[currentIndex]);

349 }

350 |

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 401

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

400 function removeShareholder(address shareholder) internal {

401 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

402 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

403 shareholders.pop();

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 402

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

401 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

402 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

403 shareholders.pop();

404 }

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 613

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

612 address[] memory path = new address[](2);

613 path[0] = address(this);

614 path[1] = WBNB;

615 uint256 balanceBefore = address(this).balance;

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 614

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

613 path[0] = address(this);

614 path[1] = WBNB;

615 uint256 balanceBefore = address(this).balance;

616 |

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 680

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

679 address[] memory path = new address[](2);

680 path[0] = WBNB;

681 path[1] = address(this);

682 |

Poject Dreams | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 681

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- pro.sol

Locations

680 path[0] = WBNB;

681 path[1] = address(this);

682 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(

683 |

Poject Dreams | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS
LINE 575

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- pro.sol

Locations

574 function getTotalFee(bool selling) public view returns (uint256) {

575 if(launchedAt + 1 >= block.number){ return feeDenominator.sub(1); }

576 if(selling){ return getMultipliedFee(); }

577 return totalFee;

Poject Dreams | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS
LINE 655

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- pro.sol

Locations

654 && autoBuybackEnabled

655 && autoBuybackBlockLast + autoBuybackBlockPeriod <= block.number // After N blocks

from last buyback

656 && address(this).balance >= autoBuybackAmount;

657 }

Poject Dreams | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS
LINE 673

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- pro.sol

Locations

672 buyTokens(autoBuybackAmount, DEAD);

673 autoBuybackBlockLast = block.number;

674 autoBuybackAccumulator = autoBuybackAccumulator.add(autoBuybackAmount);

675 if(autoBuybackAccumulator > autoBuybackCap){ autoBuybackEnabled = false; }

Poject Dreams | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS
LINE 697

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- pro.sol

Locations

696 autoBuybackBlockPeriod = _period;

697 autoBuybackBlockLast = block.number;

698 }

699 |

Poject Dreams | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS
LINE 713

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- pro.sol

Locations

712 require(launchedAt == 0, "Already launched boi");

713 launchedAt = block.number;

714 launchedAtTimestamp = block.timestamp;

715 }

Poject Dreams | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Poject Dreams | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

