
Zenithereum.ai

Smart Contract
Audit Report

04 Feb 2023

Zenithereum.ai | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Zenithereum.ai | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Zenithereum.ai ZEN-AI Binance Smart Chain

| Addresses

Contract address 0x24697e20c1921Ebd5846c5B025A5fAB1a43Fe316

Contract deployer address 0x564F67f3B4BD8e75b1E692885dfAec18b2466caf

| Project Website

https://zenithereum.ai/

| Codebase

https://bscscan.com/address/0x24697e20c1921Ebd5846c5B025A5fAB1a43Fe316#code

https://zenithereum.ai/
https://bscscan.com/address/0x24697e20c1921Ebd5846c5B025A5fAB1a43Fe316#code

Zenithereum.ai | Security Analysis

SUMMARY

Zenithereum is the intersection of #blockchain & #AI creating innovative solutions for a better future. Join us
on our journey to revolutionize the world.

| Contract Summary

Documentation Quality

Zenithereum.ai provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Zenithereum.ai with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 470, 502, 525, 526, 561, 597, 663, 667, 679, 686, 695, 928, 928, 928, 932, 936, 940, 1002, 1027,
1034, 1041, 1119, 1119, 1119, 1120, 1120, 1120, 1127, 1127, 1127, 1128, 1128, 1128, 1133, 1133, 1133,
1134, 1134, 1134, 1142, 1198, 1204, 1204, 1204 and 1214.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1003, 1004, 1152 and 1153.

Zenithereum.ai | Security Analysis

CONCLUSION

We have audited the Zenithereum.ai project released on February 2023 to discover issues and identify
potential security vulnerabilities in Zenithereum.ai Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Zenithereum.ai smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

Zenithereum.ai | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Zenithereum.ai | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Zenithereum.ai | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Zenithereum.ai | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Feb 03 2023 03:38:39 GMT+0000 (Coordinated Universal Time)

Finished Saturday Feb 04 2023 22:01:49 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Zenithereum.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 470

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

469 function add(uint256 a, uint256 b) internal pure returns (uint256) {

470 uint256 c = a + b;

471 require(c >= a, "SafeMath: addition overflow");

472

473 return c;

474

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 502

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

501 require(b <= a, errorMessage);

502 uint256 c = a - b;

503

504 return c;

505 }

506

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 525

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

524

525 uint256 c = a * b;

526 require(c / a == b, "SafeMath: multiplication overflow");

527

528 return c;

529

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 526

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

525 uint256 c = a * b;

526 require(c / a == b, "SafeMath: multiplication overflow");

527

528 return c;

529 }

530

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 561

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

560 require(b > 0, errorMessage);

561 uint256 c = a / b;

562 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

563

564 return c;

565

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 597

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

596 require(b != 0, errorMessage);

597 return a % b;

598 }

599 }

600

601

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 663

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

662 function mul(int256 a, int256 b) internal pure returns (int256) {

663 int256 c = a * b;

664

665 // Detect overflow when multiplying MIN_INT256 with -1

666 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

667

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 667

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

666 require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));

667 require((b == 0) || (c / b == a));

668 return c;

669 }

670

671

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 679

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

678 // Solidity already throws when dividing by 0.

679 return a / b;

680 }

681

682 /**

683

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 686

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

685 function sub(int256 a, int256 b) internal pure returns (int256) {

686 int256 c = a - b;

687 require((b >= 0 && c <= a) || (b < 0 && c > a));

688 return c;

689 }

690

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 695

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

694 function add(int256 a, int256 b) internal pure returns (int256) {

695 int256 c = a + b;

696 require((b >= 0 && c >= a) || (b < 0 && c < a));

697 return c;

698 }

699

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 928

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

927

928 uint256 totalSupply = 1 * 1e8 * (10**_decimals);

929

930 buyMarketingFee = 2;

931 buyLiquidityFee = 0;

932

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 928

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

927

928 uint256 totalSupply = 1 * 1e8 * (10**_decimals);

929

930 buyMarketingFee = 2;

931 buyLiquidityFee = 0;

932

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 928

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

927

928 uint256 totalSupply = 1 * 1e8 * (10**_decimals);

929

930 buyMarketingFee = 2;

931 buyLiquidityFee = 0;

932

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 932

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

931 buyLiquidityFee = 0;

932 buyTotalFees = buyMarketingFee + buyLiquidityFee;

933

934 sellMarketingFee = 2;

935 sellLiquidityFee = 0;

936

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 936

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

935 sellLiquidityFee = 0;

936 sellTotalFees = sellMarketingFee + sellLiquidityFee;

937

938 transferMarketingFee = 2;

939 transferLiquidityFee = 0;

940

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 940

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

939 transferLiquidityFee = 0;

940 transferTotalFees = transferMarketingFee + transferLiquidityFee;

941

942 marketingWallet = address(0x799c90F6B46EDad6591f4997354c3416D303972F); // set as

marketing wallet

943

944

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1002

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1001 require(airdropWallets.length < 200, "Can only airdrop 200 wallets per txn due to

gas limits"); // allows for airdrop + launch at the same exact time, reducing delays and

reducing sniper input.

1002 for(uint256 i = 0; i < airdropWallets.length; i++){

1003 address wallet = airdropWallets[i];

1004 uint256 amount = amounts[i];

1005 _transfer(msg.sender, wallet, amount);

1006

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1027

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1026 buyLiquidityFee = _liquidityFee;

1027 buyTotalFees = buyMarketingFee + buyLiquidityFee;

1028 require(buyTotalFees <= 10, "Must keep fees at 10% or less");

1029 }

1030

1031

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1034

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1033 sellLiquidityFee = _liquidityFee;

1034 sellTotalFees = sellMarketingFee + sellLiquidityFee ;

1035 require(sellTotalFees <= 10, "Must keep fees at 10% or less");

1036 }

1037

1038

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1041

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1040 transferLiquidityFee = _liquidityFee;

1041 transferTotalFees = transferMarketingFee + transferLiquidityFee;

1042 require(transferTotalFees <= 10, "Must keep fees at 10% or less");

1043 }

1044

1045

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1118 fees = amount.mul(sellTotalFees).div(100);

1119 tokensForLiquidity += fees * sellLiquidityFee / sellTotalFees;

1120 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;

1121 }

1122 }

1123

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1118 fees = amount.mul(sellTotalFees).div(100);

1119 tokensForLiquidity += fees * sellLiquidityFee / sellTotalFees;

1120 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;

1121 }

1122 }

1123

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1118 fees = amount.mul(sellTotalFees).div(100);

1119 tokensForLiquidity += fees * sellLiquidityFee / sellTotalFees;

1120 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;

1121 }

1122 }

1123

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1119 tokensForLiquidity += fees * sellLiquidityFee / sellTotalFees;

1120 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;

1121 }

1122 }

1123 // on buy

1124

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1119 tokensForLiquidity += fees * sellLiquidityFee / sellTotalFees;

1120 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;

1121 }

1122 }

1123 // on buy

1124

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1119 tokensForLiquidity += fees * sellLiquidityFee / sellTotalFees;

1120 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;

1121 }

1122 }

1123 // on buy

1124

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1127

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1126 fees = amount.mul(buyTotalFees).div(100);

1127 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;

1128 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;

1129 }

1130 } else {

1131

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1127

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1126 fees = amount.mul(buyTotalFees).div(100);

1127 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;

1128 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;

1129 }

1130 } else {

1131

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1127

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1126 fees = amount.mul(buyTotalFees).div(100);

1127 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;

1128 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;

1129 }

1130 } else {

1131

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1127 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;

1128 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;

1129 }

1130 } else {

1131 if (transferTotalFees > 0){

1132

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1127 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;

1128 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;

1129 }

1130 } else {

1131 if (transferTotalFees > 0){

1132

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1127 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;

1128 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;

1129 }

1130 } else {

1131 if (transferTotalFees > 0){

1132

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1133

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1132 fees = amount.mul(transferTotalFees).div(100);

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotalFees;

1134 tokensForMarketing += fees * transferMarketingFee / transferTotalFees;

1135 }

1136 }

1137

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1133

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1132 fees = amount.mul(transferTotalFees).div(100);

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotalFees;

1134 tokensForMarketing += fees * transferMarketingFee / transferTotalFees;

1135 }

1136 }

1137

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1133

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1132 fees = amount.mul(transferTotalFees).div(100);

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotalFees;

1134 tokensForMarketing += fees * transferMarketingFee / transferTotalFees;

1135 }

1136 }

1137

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotalFees;

1134 tokensForMarketing += fees * transferMarketingFee / transferTotalFees;

1135 }

1136 }

1137

1138

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotalFees;

1134 tokensForMarketing += fees * transferMarketingFee / transferTotalFees;

1135 }

1136 }

1137

1138

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotalFees;

1134 tokensForMarketing += fees * transferMarketingFee / transferTotalFees;

1135 }

1136 }

1137

1138

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1142

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1141

1142 amount -= fees;

1143 }

1144

1145 super._transfer(from, to, amount);

1146

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1198

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1197

1198 uint256 totalTokensToSwap = tokensForLiquidity + tokensForMarketing;

1199 bool success;

1200

1201 if(contractBalance == 0 || totalTokensToSwap == 0) {return;}

1202

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1203 // Halve the amount of liquidity tokens

1204 uint256 liquidityTokens = contractBalance * tokensForLiquidity / totalTokensToSwap

/ 2;

1205 uint256 amountToSwapForETH = contractBalance.sub(liquidityTokens);

1206

1207 uint256 initialETHBalance = address(this).balance;

1208

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1203 // Halve the amount of liquidity tokens

1204 uint256 liquidityTokens = contractBalance * tokensForLiquidity / totalTokensToSwap

/ 2;

1205 uint256 amountToSwapForETH = contractBalance.sub(liquidityTokens);

1206

1207 uint256 initialETHBalance = address(this).balance;

1208

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1203 // Halve the amount of liquidity tokens

1204 uint256 liquidityTokens = contractBalance * tokensForLiquidity / totalTokensToSwap

/ 2;

1205 uint256 amountToSwapForETH = contractBalance.sub(liquidityTokens);

1206

1207 uint256 initialETHBalance = address(this).balance;

1208

Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1214

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1213 uint256 ethForMarketing =

ethBalance.mul(tokensForMarketing).div(totalTokensToSwap);

1214 uint256 ethForLiquidity = ethBalance - ethForMarketing;

1215

1216 tokensForLiquidity = 0;

1217 tokensForMarketing = 0;

1218

Zenithereum.ai | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.8.9"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Zenithereum.sol

Locations

6

7 pragma solidity ^0.8.9;

8

9 abstract contract Context {

10 function _msgSender() internal view virtual returns (address) {

11

Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1003

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1002 for(uint256 i = 0; i < airdropWallets.length; i++){

1003 address wallet = airdropWallets[i];

1004 uint256 amount = amounts[i];

1005 _transfer(msg.sender, wallet, amount);

1006 }

1007

Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1004

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1003 address wallet = airdropWallets[i];

1004 uint256 amount = amounts[i];

1005 _transfer(msg.sender, wallet, amount);

1006 }

1007 return true;

1008

Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1152

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1151 address[] memory path = new address[](2);

1152 path[0] = address(this);

1153 path[1] = uniswapV2Router.WETH();

1154

1155 _approve(address(this), address(uniswapV2Router), tokenAmount);

1156

Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1153

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1152 path[0] = address(this);

1153 path[1] = uniswapV2Router.WETH();

1154

1155 _approve(address(this), address(uniswapV2Router), tokenAmount);

1156

1157

Zenithereum.ai | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Zenithereum.ai | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

