oty
ooo
v

Zenithereum.ai

Smart Contract
Audit Report

@ SYSFIXED 04 Feb 2023

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Zenithereum.ai | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Zenithereum.ai | Security Analysis

Project name

Token ticker

Blockchain

Zenithereum.ai

ZEN-AI

Binance Smart Chain

| Addresses

Contract address

0x24697e20c1921Ebd5846c5B025A5fAB1a43Fe316

Contract deployer address

0x564F67f3B4BD8e75b1E692885dfAec18b2466caf

| Project Website

https://zenithereum.ai/

| Codebase

https://bscscan.com/address/0x24697e20c1921Ebd5846c5B025A5fAB1a43Fe316#code

https://zenithereum.ai/
https://bscscan.com/address/0x24697e20c1921Ebd5846c5B025A5fAB1a43Fe316#code

@ SYSFIXED Zenithereum.ai | Security Analysis

SUMMARY

Zenithereum is the intersection of #blockchain & #Al creating innovative solutions for a better future. Join us
on our journey to revolutionize the world.

| Contract Summary

Documentation Quality
Zenithereum.ai provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

o Standard solidity basecode and rules are already followed by Zenithereum.ai with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 470, 502, 525, 526, 561, 597, 663, 667, 679, 686, 695, 928, 928, 928, 932, 936, 940, 1002, 1027,
1034,1041,1119,1119,1119, 1120, 1120, 1120, 1127,1127,1127,1128,1128, 1128, 1133, 1133, 1133,
1134,1134,1134,1142,1198, 1204, 1204, 1204 and 1214.

e SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 7.

e SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1003, 1004, 1152 and 1153.

@ SYSFIXED Zenithereum.ai | Security Analysis

CONCLUSION

We have audited the Zenithereum.ai project released on February-2023 to discover issues and identify
potential security vulnerabilities in Zenithereum.ai Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Zenithereum.ai smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

@‘S\FSFHEU Zenithereum.ai | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Zenithereum.ai | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Zenithereum.ai | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@sﬁrmm Zenithereum.ai | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Feb 03 2023 03:38:39 GMT+0000 (Coordinated Universal Time)
Finished Saturday Feb 04 2023 22:01:49 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File Zenithereum.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 470

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

469 function add(uint256 a, uint256 b) internal pure returns (uint256) {
470 uint256 ¢ = a + b;

471 require(c >= a, "SafeMath: addition overflow');

472

473 return c;

474

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 502

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

501 requi re(b <= a, errorMessage);
502 uint256 ¢ = a - b;

503
504 return c;
505 }

506

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 525

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

524

525 uint256 ¢ = a * b;

526 require(c / a == b, "SafeMath: multiplication overflow');
527

528 return c;

529

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 526

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

525 uint256 ¢ = a * b;
526 require(c / a == b, "SafeMath: nultiplication overflow');

527
528 return c;
529 }

530

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 561

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

560 requi re(b > 0, errorMessage);

561 uint256 ¢ = a/ b;

562 /]l assert(a ==b * ¢c + a %b); // There is no case in which this doesn't hold
563

564 return c;

565

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 597

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

596 require(b !'= 0, errorMessage);
597 return a % b;

598 }
599 }
600

601

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED

LINE 663

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
662 function mul (i nt256 a, int256 b) internal pure returns (int256) {
663 int256 ¢ = a * b;
664
665 /1l Detect overflow when multiplying MN_INT256 with -1
666 require(c !'= MN_INT256 || (a & MN_INT256) !'= (b & M N_INT256));

667

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 667

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

666 require(c '= MN_INT256 || (a & MN_INT256) != (b & M N_INT256));
667 require((b ==0) || (c/ b ==a));

668 return c;

669 }

670

671

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 679

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

678 /1 Solidity already throws when dividing by O.
679 return a / b;

680 }
681
682 /[**

683

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 686

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

685 function sub(int256 a, int256 b) internal pure returns (int256) {
686 int256 ¢ = a - b;

687 require((b >=0 & c <=a) || (b <0 &k c > a));

688 return c;

689 }

690

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 695

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

694 function add(int256 a, int256 b) internal pure returns (int256) {
695 int256 ¢ = a + b;

696 require((b >=0 & c >=a) || (b <0 &k c < a));

697 return c;

698 }

699

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 928

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
927
928 ui nt 256 total Supply = 1 * 1e8 * (10**_deci mal s);
929
930 buyMar ket i ngFee = 2;
931 buyLi qui di t yFee = 0;

932

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 928

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
927
928 ui nt 256 total Supply = 1 * 1e8 * (10**_deci mal s);
929
930 buyMar ket i ngFee = 2;
931 buyLi qui di t yFee = 0;

932

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 928

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
927
928 ui nt 256 total Supply = 1 * 1e8 * (10**_deci mal s);
929
930 buyMar ket i ngFee = 2;
931 buyLi qui di t yFee = 0;

932

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 932

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

931 buyLi qui di tyFee = 0;

932 buyTot al Fees = buyMar keti ngFee + buyLi qui di t yFee;
933

934 sel | Mar ket i ngFee
935 sel | Li qui di t yFee
936

2;
0;

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 936

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

935 sel | Li qui di tyFee = 0;

936 sel | Tot al Fees = sel | Marketi ngFee + sell Li quidityFee;
937

938 t ransf er Mar ket i ngFee
939 transferLiquidityFee
940

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 940

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

939 transferLiquidityFee = 0;

940 transferTotal Fees = transferMarketingFee + transferLiquidityFee;

941

942 mar ket i ng\Wal | et = address(0x799c90F6B46EDad6591f 4997354¢c3416D303972F); // set as
mar keti ng wal | et

943

944

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1002

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1001 requi re(airdropWall ets.length < 200, "Can only airdrop 200 wall ets per txn due to
gas limts"); // allows for airdrop + |aunch at the same exact time, reducing delays and
reduci ng sniper input.

1002 for(uint256 i = 0; i < airdropWallets.length; i++){

1003 address wallet = airdropVallets[i];

1004 ui nt 256 amount = amounts[i];

1005 _transfer(nsg.sender, wallet, anmount);

1006

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1027

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1026 buyLi qui dityFee = _liquidityFee;

1027 buyTot al Fees = buyMar ket i ngFee + buyLi qui di t yFee;

1028 requi re(buyTot al Fees <= 10, "Mist keep fees at 10% or |ess");
1029 }

1030

1031

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1034

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1033 sel |l LiquidityFee = _liquidityFee

1034 sel | Tot al Fees = sel | Marketi ngFee + sell Li quidityFee

1035 require(sell Total Fees <= 10, "Must keep fees at 10% or |ess")
1036 }

1037

1038

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1041

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1040 transferLiquidityFee = _liquidityFee

1041 transferTotal Fees = transferMarketingFee + transferlLiquidityFee;
1042 require(transferTotal Fees <= 10, "Miust keep fees at 10% or |ess");
1043 }

1044

1045

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1119

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1118 fees = anount. mul (sel | Tot al Fees) . di v(100);
1119 tokensForLiquidity += fees * sellLiquidityFee / sell Total Fees
1120 t okensFor Marketing += fees * sell MarketingFee / sell Tot al Fees;
1121}
1122}

1123

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1118 fees = anount. mul (sel | Tot al Fees) . di v(100);
1119 tokensForLiquidity += fees * sellLiquidityFee / sell Total Fees
1120 t okensFor Marketing += fees * sell MarketingFee / sell Tot al Fees;
1121}
1122}

1123

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1119

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1118 fees = anount. mul (sel | Tot al Fees) . di v(100);
1119 tokensForLiquidity += fees * sellLiquidityFee / sell Total Fees
1120 t okensFor Marketing += fees * sell MarketingFee / sell Tot al Fees;
1121}
1122}

1123

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1119 tokensForLiquidity += fees * sellLiquidityFee / sell Total Fees
1120 t okensFor Marketing += fees * sell Marketi ngFee / sell Tot al Fees;
1121}
1122}
1123 [l on buy

1124

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1119 tokensForLiquidity += fees * sellLiquidityFee / sell Total Fees
1120 t okensFor Marketing += fees * sell Marketi ngFee / sell Tot al Fees;
1121}
1122}
1123 [l on buy

1124

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1120

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1119 tokensForLiquidity += fees * sellLiquidityFee / sell Total Fees
1120 t okensFor Marketing += fees * sell Marketi ngFee / sell Tot al Fees;
1121}
1122}
1123 [l on buy

1124

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1127

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1126 fees = anount. mul (buyTot al Fees) . di v(100);
1127 tokensForLiquidity += fees * buyLiquidityFee / buyTot al Fees;
1128 t okensFor Marketi ng += fees * buyMarketi ngFee / buyTot al Fees;
1129 }
1130 } else {

1131

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED

LINE 1127

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1126 fees = anount. mul (buyTot al Fees) . di v(100);
1127 tokensForLiquidity += fees * buyLiquidityFee / buyTot al Fees;
1128 t okensFor Marketi ng += fees * buyMarketi ngFee / buyTot al Fees;
1129 }
1130 } else {

1131

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1127

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1126 fees = anount. mul (buyTot al Fees) . di v(100);
1127 tokensForLiquidity += fees * buyLiquidityFee / buyTot al Fees;
1128 t okensFor Marketi ng += fees * buyMarketi ngFee / buyTot al Fees;
1129 }
1130 } else {

1131

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1127 tokensForLiquidity += fees * buyLiquidityFee / buyTot al Fees;
1128 t okensFor Marketing += fees * buyMarketi ngFee / buyTot al Fees;
1129 }
1130 } else {
1131 if (transferTotal Fees > 0){

1132

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1127 tokensForLiquidity += fees * buyLiquidityFee / buyTot al Fees;
1128 t okensFor Marketing += fees * buyMarketi ngFee / buyTot al Fees;
1129 }
1130 } else {
1131 if (transferTotal Fees > 0){

1132

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1127 tokensForLiquidity += fees * buyLiquidityFee / buyTot al Fees;
1128 t okensFor Marketing += fees * buyMarketi ngFee / buyTot al Fees;
1129 }
1130 } else {
1131 if (transferTotal Fees > 0){

1132

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1133

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1132 fees = anount. mul (transferTot al Fees) . di v(100);
1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotal Fees;
1134 t okensFor Marketi ng += fees * transferMarketingFee / transferTotal Fees;
1135 }
1136 }

1137

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1133

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1132 fees = anount. mul (transferTot al Fees) . di v(100);
1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotal Fees;
1134 t okensFor Marketi ng += fees * transferMarketingFee / transferTotal Fees;
1135 }
1136 }

1137

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1133

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1132 fees = anount. mul (transferTot al Fees) . di v(100);
1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotal Fees;
1134 t okensFor Marketi ng += fees * transferMarketingFee / transferTotal Fees;
1135 }
1136 }

1137

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotal Fees;
1134 t okensFor Marketing += fees * transferMarketi ngFee / transferTotal Fees;
1135 }

1136 }

1137

1138

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotal Fees;
1134 t okensFor Marketing += fees * transferMarketi ngFee / transferTotal Fees;
1135 }

1136 }

1137

1138

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1134

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1133 tokensForLiquidity += fees * transferLiquidityFee / transferTotal Fees;
1134 t okensFor Marketing += fees * transferMarketi ngFee / transferTotal Fees;
1135 }

1136 }

1137

1138

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1142

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations
1141
1142 anmount -= fees
1143 }
1144

1145 super. _transfer(from to, anount);
1146

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1198

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1197

1198 ui nt 256 t ot al TokensToSwap = tokensForLi quidity + tokensForMarketing;
1199 bool success;

1200

1201 if(contractBal ance == 0 || total TokensToSwap == 0) {return;}

1202

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1204

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1203 /1 Halve the amobunt of liquidity tokens

1204 ui nt 256 |iquidityTokens = contractBal ance * tokensForLiquidity / total TokensToSwap
! 2;

1205 ui nt 256 anount ToSwapFor ETH = cont ract Bal ance. sub(| i qui di t yTokens) ;

1206

1207 ui nt 256 initial ETHBal ance = address(this).bal ance

1208

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1204

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1203 /1 Halve the amobunt of liquidity tokens

1204 ui nt 256 |iquidityTokens = contractBal ance * tokensForLiquidity / total TokensToSwap
! 2;

1205 ui nt 256 anount ToSwapFor ETH = cont ract Bal ance. sub(| i qui di t yTokens) ;

1206

1207 ui nt 256 initial ETHBal ance = address(this).bal ance

1208

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1204

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1203 /1 Halve the amobunt of liquidity tokens

1204 ui nt 256 |iquidityTokens = contractBal ance * tokensForLiquidity / total TokensToSwap
! 2;

1205 ui nt 256 anount ToSwapFor ETH = cont ract Bal ance. sub(| i qui di t yTokens) ;

1206

1207 ui nt 256 initial ETHBal ance = address(this).bal ance

1208

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1214

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- Zenithereum.sol

Locations

1213 ui nt 256 et hFor Marketing =

et hBal ance. mul (t okensFor Mar ket i ng) . di v(t ot al TokensToSwap) ;
1214 ui nt 256 et hForLiquidity = ethBal ance - ethFor Marketi ng;
1215

1216 tokensForLiquidity
1217 tokensFor Marketi ng
1218

0;
0;

@‘S\FSFHEU Zenithereum.ai | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY

The current pragma Solidity directive is ""*0.8.9"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Zenithereum.sol

Locations

pragna solidity ~0.8.09;

abstract contract Context {
0 function _nsgSender() internal view virtual returns (address) ({
1

P P O 00 ~NO®

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1003

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1002 for(uint256 i = 0; i < airdropVWallets.length; i++){
1003 address wal l et = airdropVallets[i];

1004 ui nt 256 anount = anounts[i];

1005 _transfer(nsg. sender, wallet, anount);

1006 }

1007

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1004

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1003 address wal l et = airdropVallets[i];
1004 ui nt 256 amount = amounts[i];

1005 _transfer(nsg. sender, wallet, anount);
1006 }

1007 return true

1008

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1152

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1151 address[] nenory path = new address[](2);

1152 pat h{ 0] address(this);

1153 pat h[1] uni swapV2Rout er . WETH() ;

1154

1155 _approve(address(this), address(uni swapV2Router), tokenAnount);
1156

@S\FSHREU Zenithereum.ai | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1153

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Zenithereum.sol

Locations

1152 pat h[0]
1153 pat h[1]
1154

1155 _approve(address(this), address(uni swapV2Router), tokenAmount);
1156

1157

address(this);
uni swapV2Rout er . WETH() ;

@S\FSHREU Zenithereum.ai | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@S\FSHREU Zenithereum.ai | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

