
Gen Shards

Smart Contract
Audit Report

03 Apr 2022

Gen Shards | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Gen Shards | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Gen Shards GS Ethereum

| Addresses

Contract address 0xe0b9a2c3e9f40cf74b2c7f591b2b0cca055c3112

Contract deployer address 0xB452A14B387DA9328C3a3f1ECD6e210B943614FA

| Project Website

http://genshards.com/

| Codebase

https://etherscan.io/address/0xe0b9a2c3e9f40cf74b2c7f591b2b0cca055c3112#code

http://genshards.com/
https://etherscan.io/address/0xe0b9a2c3e9f40cf74b2c7f591b2b0cca055c3112#code

Gen Shards | Security Analysis

SUMMARY

Genesis Shards is a new marketplace for pre-IDO tokens on NFTs. It allows NFTs transformation into a liquidity
vehicle for Pre-IDO tokens and a whole new suite of DeFi products across multiple blockchains. $GS is the
native token of the Genesis Shard Ecosystem.

| Contract Summary

Documentation Quality

Gen Shards provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Gen Shards with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9, 36, 116,
333, 641, 711, 758 and 800.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 853.
SWC-116 | It is recommended to use oracles for block values as a proxy for time on lines 969.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 999, 1072, 999
and 1085.

Gen Shards | Security Analysis

CONCLUSION

We have audited the Gen Shards project released on April 2022 to discover issues and identify potential
security vulnerabilities in Gen Shards Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Gen Shards smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a control flow decision is made based on The block.timestamp
environment variable, the potential use of "block.number" as a source of randomness, requirement violation,
and out of bounds array access which the index access expression can cause an exception in case of the use
of an invalid array index value. We recommend to don't using any of those environment variables as sources of
randomness and being aware that the use of these variables introduces a certain level of trust in miners. The
requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Gen Shards | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Gen Shards | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations.
ISSUE

FOUND

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Gen Shards | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Gen Shards | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Apr 02 2022 00:53:08 GMT+0000 (Coordinated Universal Time)

Finished Sunday Apr 03 2022 06:49:34 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File GenShards.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.NUMBER ENVIRONMENT VARIABLE.

low acknowledged

SWC-120
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.NUMBER ENVIRONMENT VARIABLE.

low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

8

9 pragma solidity >=0.6.0 <0.8.0;

10

11 /*

12 * @dev Provides information about the current execution context, including the

13

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 36

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

35

36 pragma solidity >=0.6.0 <0.8.0;

37

38 /**

39 * @dev Interface of the ERC20 standard as defined in the EIP.

40

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 116

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

115

116 pragma solidity >=0.6.0 <0.8.0;

117

118 /**

119 * @dev Wrappers over Solidity's arithmetic operations with added overflow

120

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 333

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

332

333 pragma solidity >=0.6.0 <0.8.0;

334

335

336

337

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 641

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

640

641 pragma solidity >=0.6.0 <0.8.0;

642

643 /**

644 * @dev Contract module which provides a basic access control mechanism, where

645

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 711

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

710

711 pragma solidity >=0.6.0 <0.8.0;

712

713

714 /**

715

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 758

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

757

758 pragma solidity >=0.6.0 <0.8.0;

759

760

761

762

Gen Shards | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 800

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- GenShards.sol

Locations

799

800 pragma solidity >=0.6.0 <0.8.0;

801

802 interface ILiquiditySyncer {

803 function syncLiquiditySupply(address pool) external;

804

Gen Shards | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 969

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- GenShards.sol

Locations

968 require(nonce == nonces[signatory]++, "GenShards::delegateBySig: invalid nonce");

969 require(now <= expiry, "GenShards::delegateBySig: signature expired");

970 return _delegate(signatory, delegatee);

971 }

972

973

Gen Shards | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 999

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- GenShards.sol

Locations

998 {

999 require(blockNumber < block.number, "GenShards::getPriorVotes: not yet

determined");

1000

1001 uint32 nCheckpoints = numCheckpoints[account];

1002 if (nCheckpoints == 0) {

1003

Gen Shards | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1072

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- GenShards.sol

Locations

1071 {

1072 uint32 blockNumber = safe32(block.number, "GenShards::_writeCheckpoint: block

number exceeds 32 bits");

1073

1074 if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock ==

blockNumber) {

1075 checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;

1076

Gen Shards | Security Analysis

SWC-120 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.NUMBER ENVIRONMENT VARIABLE.
LINE 999

low SEVERITY
The block.number environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- GenShards.sol

Locations

998 {

999 require(blockNumber < block.number, "GenShards::getPriorVotes: not yet

determined");

1000

1001 uint32 nCheckpoints = numCheckpoints[account];

1002 if (nCheckpoints == 0) {

1003

Gen Shards | Security Analysis

SWC-120 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.NUMBER ENVIRONMENT VARIABLE.
LINE 1085

low SEVERITY
The block.number environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- GenShards.sol

Locations

1084 function safe32(uint n, string memory errorMessage) internal pure returns (uint32)

{

1085 require(n < 2**32, errorMessage);

1086 return uint32(n);

1087 }

1088

1089

Gen Shards | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 853

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- GenShards.sol

Locations

852 if (address(locker) != address(0)) {

853 locker.lockOrGetPenalty(sender, recipient);

854 }

855 return super._transfer(sender, recipient, amount);

856 }

857

Gen Shards | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Gen Shards | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

