
RAPPER TOKEN

Smart Contract
Audit Report

20 Jan 2023

RAPPER TOKEN | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

RAPPER TOKEN | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

RAPPER TOKEN RAPT BSC

| Addresses

Contract address 0xB4B1d689077BF8b897D6B706d6aAC7597675A740

Contract deployer address 0x45E543ec2c3500c954EDb4134fC4f6871379767b

| Project Website

https://www.rappertoken.com/

| Codebase

https://bscscan.com/address/0xB4B1d689077BF8b897D6B706d6aAC7597675A740#code

https://www.rappertoken.com/
https://bscscan.com/address/0xB4B1d689077BF8b897D6B706d6aAC7597675A740#code

RAPPER TOKEN | Security Analysis

SUMMARY

$RAPT rewarding its investors with passive income with 2 automatic earnings. Listen to Rap And Earn Money
For Free!The Concept Of L2E Is Based On Making Ordinary Things Profitable. By introducing Rapper Token,
Folks Are Able To Get Paid For Listening To Rap. Listen To Earn Platform Live, KYC+AUDI, BUSD Rewards, No
Private Sale, Staking,YouTube/Twitter Marketing Campaign, CEX Listing, Chinese WeChat / Weibo Marketing,
The Best Low Tax Callers On Board.

| Contract Summary

Documentation Quality

Documentation Quality

RAPPER TOKEN provides a document with a good enough standard of solidity base code.

The technical description is provided clearly and structured, but there are a lot problem with arithmetic
operation Issues discovered, state variable visibility is not set, and out of bounds array access

Code Quality

The Overall quality of the basecode is GOOD enough with 30 low-risk issues

Standart solidity basecode and rules are already followed with RAPPER TOKEN Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

provides a document with a good standard of solidity base code.

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 12, 22, 31, 32, 42, 217, 220, 221, 305, 306,
311, 353, 354, 545, 371, 372, 375, 412, 477, 491, 499, 563, 659, 709, 710, 715, 353 and 354.
SWC-103 | A floating pragma is set on lines 7.
SWC-108 | State variable visibility is not set on lines 195, 203, 204, 205, 207, 208, 209, 223, 225, 362, 363,
364, 365, 371, 377, 378, 380, 381, 382, 383, 385, 386, 387, 389, 394, 395, 403, 404, and 413. It is best
practice to set the visibility of state variables explicitly. The default visibility for "protections" is internal.
Other possible visibility settings are public and private.
SWC-110 | Out of bounds array access on lines 268, 269, 299, 300, 353, 354, 586, 587, 710, 716, 717, and
718.

RAPPER TOKEN | Security Analysis

CONCLUSION

We have audited the RAPPER TOKEN Coin which has released on January 2023 to discover issues and identify
potential security vulnerabilities in Goge Project. This process is used to find bugs, technical issues, and
security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low-risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that were found were asserting
violation and floating pragma is set, we recommend the index access expression can cause an exception in
case of use of invalid array index value.

RAPPER TOKEN | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

RAPPER TOKEN | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

RAPPER TOKEN | Security Analysis

SMART CONTRACT ANALYSIS

Started Thu Jan 19 2023 04:03:42 GMT+0000 (Coordinated Universal Time)

Finished Fri Jan 20 2023 06:03:49 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File RAPPERTOKEN.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 12

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

11 library SafeMath {

12 function add(uint256 a, uint256 b) internal pure returns (uint256) {

13 uint256 c = a + b;

14 require(c >= a, "SafeMath: addition overflow");

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 22

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

21 require(b <= a, errorMessage);

22 uint256 c = a - b;

23 return c;

24 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 31

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

30 }

31 uint256 c = a * b;

32 require(c / a == b, "SafeMath: multiplication overflow");

33 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 32

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

31 uint256 c = a * b;

32 require(c / a == b, "SafeMath: multiplication overflow");

33 return c;

34 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 42

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

41 require(b > 0, errorMessage);

42 uint256 c = a / b;

43 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

44 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 217

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

216 uint256 public dividendsPerShare;

217 uint256 public dividendsPerShareAccuracyFactor = 10 ** 36;

218 //SETMEUP, change this to 1 hour instead of 10mins

219 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 220

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

219 //SETMEUP, change this to 1 hour instead of 10mins

220 uint256 public minPeriod = 30 * 60;

221 uint256 public minDistribution = 1 * (10 ** 12);

222 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 221

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

220 uint256 public minPeriod = 30 * 60;

221 uint256 public minDistribution = 1 * (10 ** 12);

222 uint256 currentIndex;

223 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 305

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

304 gasLeft = gasleft();

305 currentIndex++;

306 iterations++;

307 }

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 306

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

305 currentIndex++;

306 iterations++;

307 }

308 }

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 311

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

310 return shareholderClaims[shareholder] + minPeriod < block.timestamp

311 && getUnpaidEarnings(shareholder) > minDistribution;

312 }

313 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

352 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

353 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

354 shareholders.pop();

355 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

353 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

354 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

355 shareholders.pop();

356 }

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 371

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

370 uint8 constant _decimals = 2;

371 uint256 _totalSupply = 1 * 10**9 * (10 ** _decimals);

372 uint256 public _maxTxAmount = _totalSupply * 5 / 100;

373 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 372

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

371 uint256 _totalSupply = 1 * 10**9 * (10 ** _decimals);

372 uint256 public _maxTxAmount = _totalSupply * 5 / 100;

373 //max wallet holding of 5%

374 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 375

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

374 //max wallet holding of 5%

375 uint256 public _maxWalletToken = (_totalSupply * 5) / 100;

376 mapping (address => uint256) _balances;

377 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 412

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

411 bool public swapEnabled = true;

412 uint256 public swapThreshold = _totalSupply * 10 / 10000; // 0.01% of supply

413 bool inSwap;

414 modifier swapping() { inSwap = true; _; inSwap = false; }

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 477

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

476 function setMaxWalletPercent(uint256 maxWallPercent) external onlyOwner() {

477 _maxWalletToken = (_totalSupply * maxWallPercent) / 100;

478 }

479 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 491

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

490 uint256 heldTokens = balanceOf(recipient);

491 require((heldTokens + amount) <= _maxWalletToken,"Total Holding is currently

limited, you can not buy that much.");}

492 |

493 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 499

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

498 require(cooldownTimer[recipient] < block.timestamp,"Please wait for 1min between

two buys");

499 cooldownTimer[recipient] = block.timestamp + cooldownTimerInterval;

500 }

501 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 563

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

562 uint256 amountBNB = address(this).balance;

563 payable(marketingFeeReceiver).transfer(amountBNB * amountPercentage / 100);

564 }

565 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 659

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

658 feeDenominator = _feeDenominator;

659 require(totalFee < feeDenominator/4);

660 }

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 709

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

708 require(addresses.length == tokens.length,"Mismatch between Address and token

count");

709 for(uint i=0; i < addresses.length; i++){

710 SCCC = SCCC + tokens[i];

711 }

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 710

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

709 for(uint i=0; i < addresses.length; i++){

710 SCCC = SCCC + tokens[i];

711 }

712 |

RAPPER TOKEN | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 715

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

714 require(balanceOf(from) >= SCCC, "Not enough tokens in wallet for airdrop");

715 for(uint i=0; i < addresses.length; i++){

716 _basicTransfer(from,addresses[i],tokens[i]);

717 if(!isDividendExempt[addresses[i]]) {

RAPPER TOKEN | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 353

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

352 function removeShareholder(address shareholder) internal {

353 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

354 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

355 shareholders.pop();

RAPPER TOKEN | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 354

low SEVERITY
This plugin produces issues to support false positive discovery within Mythril.

Source File
- RAPPERTOKEN.sol

Locations

353 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

354 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

355 shareholders.pop();

356 }

RAPPER TOKEN | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 7

low SEVERITY
The current pragma Solidity directive is ""^0.7.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RAPPERTOKEN.sol

Locations

6 //SPDX-License-Identifier: MIT

7 pragma solidity ^0.7.4;

8 |

9 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 195

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_token" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

194 using SafeMath for uint256;

195 address _token;

196 struct Share {

197 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 203

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "BUSD" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

202 IBEP20 BUSD = IBEP20(0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56);

203 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

204 IDEXRouter router;

205 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 204

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "WBNB" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

203 IBEP20 BUSD = IBEP20(0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56);

204 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

205 IDEXRouter router;

206 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 205

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "router" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

204 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

205 IDEXRouter router;

206 address[] shareholders;

207 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 207

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholders" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

206 IDEXRouter router;

207 address[] shareholders;

208 mapping (address => uint256) shareholderIndexes;

209 mapping (address => uint256) shareholderClaims;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 208

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholderIndexes"
is internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

207 address[] shareholders;

208 mapping (address => uint256) shareholderIndexes;

209 mapping (address => uint256) shareholderClaims;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 209

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "shareholderClaims" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

208 mapping (address => uint256) shareholderIndexes;

209 mapping (address => uint256) shareholderClaims;

210 mapping (address => Share) public shares;

211 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 223

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "currentIndex" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

222 uint256 public minDistribution = 1 * (10 ** 12);

223 uint256 currentIndex;

224 bool initialized;

225 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 225

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "initialized" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

224 uint256 currentIndex;

225 bool initialized;

226 modifier initialization() {

227 require(!initialized);

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 362

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "BUSD" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

361 using SafeMath for uint256;

362 address BUSD = 0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56;

363 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

364 address DEAD = 0x000000000000000000000000000000000000dEaD;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 363

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "WBNB" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

362 address BUSD = 0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56;

363 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

364 address DEAD = 0x000000000000000000000000000000000000dEaD;

365 address ZERO = 0x00;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 364

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "DEAD" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

363 address WBNB = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;

364 address DEAD = 0x000000000000000000000000000000000000dEaD;

365 address ZERO = 0x00;

366 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 365

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "ZERO" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

364 address DEAD = 0x000000000000000000000000000000000000dEaD;

365 address ZERO = 0x00;

366 string constant _name = "RAPPER TOKEN";

367 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 371

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

370 uint8 constant _decimals = 2;

371 uint256 _totalSupply = 1 * 10**9 * (10 ** _decimals);

372 uint256 public _maxTxAmount = _totalSupply * 5 / 100;

373 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 377

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

376 uint256 public _maxWalletToken = (_totalSupply * 5) / 100;

377 mapping (address => uint256) _balances;

378 mapping (address => mapping (address => uint256)) _allowances;

379 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 378

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_allowances" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

377 mapping (address => uint256) _balances;

378 mapping (address => mapping (address => uint256)) _allowances;

379 mapping (address => bool) isFeeExempt;

380 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 380

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isFeeExempt" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

379 mapping (address => mapping (address => uint256)) _allowances;

380 mapping (address => bool) isFeeExempt;

381 mapping (address => bool) isTxLimitExempt;

382 mapping (address => bool) isTimelockExempt;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 381

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTxLimitExempt" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

380 mapping (address => bool) isFeeExempt;

381 mapping (address => bool) isTxLimitExempt;

382 mapping (address => bool) isTimelockExempt;

383 mapping (address => bool) isDividendExempt;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 382

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTimelockExempt" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

381 mapping (address => bool) isTxLimitExempt;

382 mapping (address => bool) isTimelockExempt;

383 mapping (address => bool) isDividendExempt;

384 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 383

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isDividendExempt" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

382 mapping (address => bool) isTimelockExempt;

383 mapping (address => bool) isDividendExempt;

384 uint256 liquidityFee = 1;

385 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 385

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "liquidityFee" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

384 mapping (address => bool) isDividendExempt;

385 uint256 liquidityFee = 1;

386 uint256 reflectionFee = 1;

387 uint256 marketingFee = 5;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 386

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "reflectionFee" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

385 uint256 liquidityFee = 1;

386 uint256 reflectionFee = 1;

387 uint256 marketingFee = 5;

388 uint256 public totalFee = 7;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 387

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "marketingFee" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

386 uint256 reflectionFee = 1;

387 uint256 marketingFee = 5;

388 uint256 public totalFee = 7;

389 uint256 feeDenominator = 100;

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 389

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "feeDenominator" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

388 uint256 public totalFee = 7;

389 uint256 feeDenominator = 100;

390 address public autoLiquidityReceiver;

391 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 394

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "targetLiquidity" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

393 address public marketingFeeReceiver;

394 uint256 targetLiquidity = 20;

395 uint256 targetLiquidityDenominator = 100;

396 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 395

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"targetLiquidityDenominator" is internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

394 uint256 targetLiquidity = 20;

395 uint256 targetLiquidityDenominator = 100;

396 IDEXRouter public router;

397 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 403

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "distributor" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

402 bool public tradingOpen = true;

403 DividendDistributor distributor;

404 uint256 distributorGas = 500000;

405 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 404

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "distributorGas" is
internal. Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

403 DividendDistributor distributor;

404 uint256 distributorGas = 500000;

405 // Cooldown & timer functionality

406 |

RAPPER TOKEN | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 413

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- RAPPERTOKEN.sol

Locations

412 uint256 public swapThreshold = _totalSupply * 10 / 10000; // 0.01% of supply

413 bool inSwap;

414 modifier swapping() { inSwap = true; _; inSwap = false; }

415 |

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 268

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

267 address[] memory path = new address[](2);

268 path[0] = WBNB;

269 path[1] = address(BUSD);

270 |

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 269

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

268 path[0] = WBNB;

269 path[1] = address(BUSD);

270 router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: msg.value}(

271 |

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 299

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

298 }

299 if(shouldDistribute(shareholders[currentIndex])){

300 distributeDividend(shareholders[currentIndex]);

301 }

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 300

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

299 if(shouldDistribute(shareholders[currentIndex])){

300 distributeDividend(shareholders[currentIndex]);

301 }

302 |

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 353

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

352 function removeShareholder(address shareholder) internal {

353 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

354 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

355 shareholders.pop();

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 354

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

353 shareholders[shareholderIndexes[shareholder]] = shareholders[shareholders.length-

1];

354 shareholderIndexes[shareholders[shareholders.length-1]] =

shareholderIndexes[shareholder];

355 shareholders.pop();

356 }

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 586

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

585 address[] memory path = new address[](2);

586 path[0] = address(this);

587 path[1] = WBNB

588 |

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 587

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

586 path[0] = address(this);

587 path[1] = WBNB;

588 uint256 balanceBefore = address(this).balance;

589 |

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 710

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

709 for(uint i=0; i < addresses.length; i++){

710 SCCC = SCCC + tokens[i];

711 }

712 |

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 716

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

715 for(uint i=0; i < addresses.length; i++){

716 _basicTransfer(from,addresses[i],tokens[i]);

717 if(!isDividendExempt[addresses[i]]) {

718 try distributor.setShare(addresses[i], _balances[addresses[i]]) {} catch {}

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 717

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

716 basicTransfer(from,addresses[i],tokens[i]);

717 if(!isDividendExempt[addresses[i]]) {

718 try distributor.setShare(addresses[i], _balances[addresses[i]]) {} catch {}

719 }

RAPPER TOKEN | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 718

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- RAPPERTOKEN.sol

Locations

717 if(!isDividendExempt[addresses[i]]) {

718 try distributor.setShare(addresses[i], _balances[addresses[i]]) {} catch {}

719 }

720 }

RAPPER TOKEN | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

RAPPER TOKEN | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

