LunaFi

Smart Contract
Audit Report

@ SYSFIXED 29 Jul 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

LunaFi | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

LunaFi | Security Analysis

Project name

Token ticker

Blockchain

LunaFi

LFI

Polygon Matic

| Addresses

Contract address

0x77D97db5615dFE8a2D16b38EAa3f8f34524a0a74

Contract deployer address

0xA2E31d79E65bF200a9681A38BA18cd9C5Fbe4Df5

| Project Website

https://lunafi.io/

| Codebase

https://polygonscan.com/address/0x77D97db5615dFE8a2D16b38EAa3f8f34524a0a74#contracts

https://lunafi.io/
https://polygonscan.com/address/0x77D97db5615dFE8a2D16b38EAa3f8f34524a0a74#contracts

@ SYSFIXED LunaFi | Security Analysis

SUMMARY

LunaFi is the world’s first peerless and community-owned DeFi betting platform. We have decentralized
peerless betting. We innovate by enabling bets to be placed on the blockchain without a counterparty.
Autonomous and Transparent Odds are calculated transparently and fairly, using on-chain prediction markets
Community owned via the LunaFi DAO Owned and governed by a community of liquidity providers and LFI
token holders. The SLFI Token A trustless and non-custodial DeFi betting platform powered by the LFI token.

| Contract Summary

Documentation Quality
LunaFi provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by LunaFi with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 12, 98, 128,
156, 541, 648, 740, 819, 847, 877,1126, 1189, 1422, 1527 and 1573.

@ SYSFIXED LunaFi | Security Analysis

CONCLUSION

We have audited the LunaFi project released on July 2022 to discover issues and identify potential security
vulnerabilities in LunaFi Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the LunaFi smart contract code do not pose a considerable risk. The writing of the contract
is close to the standard of writing contracts in general. The low-risk issues found are some floating pragma is
set. Specifying a fixed compiler version is recommended to ensure that the bytecode produced does not vary
between builds. This is especially important if you rely on bytecode-level verification of the code.

@‘S\FSFHEU LunaFi | Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107 . . PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

LunaFi | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

LunaFi | Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@sﬁﬂxm LunaFi | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jul 28 2022 15:11:00 GMT+0000 (Coordinated Universal Time)
Finished Friday Jul 29 2022 18:39:21 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File LFIToken.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

A FLOATING PRAGMA IS SET. acknowledged

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 12

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
11
12 pragme solidity ~0.8.0;
13
14 &%
15 * @lev Interface of the ERC20 standard as defined in the ElP.
16

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 98

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
97
98 pragma solidity ~0.8.0;
99
100 [Jes
101 * @lev Interface for the optional netadata functions fromthe ERC20 standard.
102

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 128

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
127
128 pragna solidity ~0.8.0;
129
130 [Jes
131 * @lev Provides information about the current execution context, including the
132

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 156

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol

Locations

155
156 pragma solidity ~0.8.0;
157
158
159
160

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 541

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
540
541 pragma solidity ~0.8.0;
542
543 [**
544 * @lev Contract nodul e which allows children to inplenment an energency stop
545

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 648

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
647
648 pragma solidity ~0.8.0;
649
650 /**
651 * @lev External interface of AccessControl declared to support ERCL65 detection.
652

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 740

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File

- LFIToken.sol

Locations
739
740 pragma solidity ~0.8.0;
741
742 [**
743 * @lev String operations.
744

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 819

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
818
819 pragma solidity ~0.8.0;
820
821 [e
822 * @lev Interface of the ERCL65 standard, as defined in the
823

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 847

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
846
847 pragma solidity ~0.8.0;
848
849 /**
850 * @lev | nplenentation of the {IERCL65} interface.
851

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 877

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol

Locations

876
877 pragma solidity ~0.8.0;
878
879
880
881

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1126

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
1125
1126 pragme solidity ~0.8.0;
1127
1128 [**

1129 * @lev Interface of the ERC20 Permit extension allow ng approvals to be nade via
signatures, as defined in
1130

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1189

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
1188
1189 pragme solidity ~0.8.0;
1190
1191 [/ **
1192 * @lev Elliptic Curve Digital Signature Al gorithm (ECDSA) operations.
1193

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1422

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
1421
1422 pragme solidity ~0.8.0;
1423
1424 [**

1425 * @lev https://eips.ethereumorg/ ElPS/eip-712[EIP 712] is a standard for hashing
and signing of typed structured data.
1426

@‘S\FSFHEU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1527

low SEVERITY

The current pragma Solidity directive is ""*0.8.0". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol
Locations
1526
1527 pragme solidity ~0.8.0;
1528
1529 [**
1530 * @itle Counters
1531

@‘S\FSHREU LunaFi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1573

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- LFIToken.sol

Locations

1572
1573 pragma solidity ~0.8.0;
1574
1575
1576
1577

@S‘I"‘SH}I{ED LunaFi | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@S‘I"‘SH}I{ED LunaFi | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

