
Cougar Token

Smart Contract
Audit Report

10 Oct 2021



Cougar Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



Cougar Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Cougar Token CGS Harmony

| Addresses

Contract address 0x6cc35220349c444c39b8e26b359757739aaec952

Contract deployer address 0x75c630F22298C20AAeEb1592639d29E325Bee91D

| Project Website

https://cougarswap.io/ 

| Codebase

https://explorer.harmony.one/address/0x6cc35220349c444c39b8e26b359757739aaec952?activeTab=7

https://cougarswap.io/
https://explorer.harmony.one/address/0x6cc35220349c444c39b8e26b359757739aaec952?activeTab=7


Cougar Token | Security Analysis

SUMMARY

The Cougar token (CGS) is a multi-chain compatible utility token structured for Cougar Ecosystem. The
principle to the deployment of CougarSwap is the fact that all liquidity pairs exchange tokens with $CGS
tokens. This design determination makes full use of the absolute on-chain advantages that allow for sub-
transfer of value across chains and provide larger liquidity for the whole ecosystem and brings the most
profitable investment solutions within networks.

| Contract Summary

Documentation Quality

Cougar Token provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by Cougar Token.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5, 28, 94,
107, 204, 417, 606, 925, 1023, 1069 and 1124.
SWC-116 | It is recommended to use oracles for block values as a proxy for time on lines 1429.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 1459, 1532
and 1459.
SWC-127 | A developer should not allow a user to assign arbitrary values to function type variables on
lines 814.



Cougar Token | Security Analysis

CONCLUSION

We have audited the Cougar Token project released in October 2021 to find issues and identify potential
security vulnerabilities in the Cougar Token project. This process is used to find technical issues and security
loopholes that may be found in smart contracts.

The security audit report yielded unsatisfactory results, discovering high-risk and low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The serious and low
problems we found in the smart contract are the caller can redirect execution to arbitrary bytecode locations.,
and low-risk issues are some a floating pragma is set, floating pragma is set, control flow decision is made
based on The block.timestamp environment variable, and control flow decision is made based on The
block.timestamp environment variable. It is possible to redirect the control flow to arbitrary locations in the
code. This may allow an attacker to bypass security controls or manipulate the business logic of the smart
contract. Avoid using low-level operations and assembly to prevent this issue. A floating pragma is set, and the
current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to ensure
that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-
level verification of the code. The block.number environment variable is used to determine a control flow
decision. Note that the values of variables like coinbase, gaslimit, block number, and timestamp are
predictable and can be manipulated by a malicious miner. Also, keep in mind that attackers know hashes of
earlier blocks. Don't use any of those environment variables as sources of randomness and be aware that the
use of these variables introduces a certain level of trust into miners.

We were recommended to keep being aware of investing in this risky smart contract.



Cougar Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



Cougar Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations.
ISSUE

FOUND

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

ISSUE
FOUND



Cougar Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS



Cougar Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Oct 09 2021 16:06:07 GMT+0000 (Coordinated Universal Time)

Finished Sunday Oct 10 2021 03:50:35 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File CougarToken.sol

| Detected Issues

ID Title Severity Status

SWC-127
THE CALLER CAN REDIRECT EXECUTION TO ARBITRARY
BYTECODE LOCATIONS.

high acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged



SWC-116
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.NUMBER ENVIRONMENT VARIABLE.

low acknowledged



Cougar Token | Security Analysis

SWC-127 | THE CALLER CAN REDIRECT EXECUTION TO
ARBITRARY BYTECODE LOCATIONS.
LINE 814

high SEVERITY
It is possible to redirect the control flow to arbitrary locations in the code. This may allow an attacker to bypass
security controls or manipulate the business logic of the smart contract. Avoid using low-level-operations and
assembly to prevent this issue. 

Source File
- CougarToken.sol 

Locations

813   */

814   function mint(uint256 amount) public onlyOwner returns (bool) {

815   _mint(_msgSender(), amount);

816   return true;

817   }

818   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

4   

5   pragma solidity >=0.6.0 <0.8.0;

6   

7   /*

8   * @dev Provides information about the current execution context, including the

9   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 28

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

27   

28   pragma solidity >=0.6.0 <0.8.0;

29   

30   /**

31   * @dev Contract module which provides a basic access control mechanism, where

32   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 94

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

93   

94   pragma solidity >=0.6.0 <0.8.0;

95   

96   /*

97   * @dev Provides information about the current execution context, including the

98   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 107

low SEVERITY
The current pragma Solidity directive is "">=0.4.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

106   

107   pragma solidity >=0.4.0;

108   

109   interface IBEP20 {

110   /**

111   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 204

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

203   

204   pragma solidity >=0.6.0 <0.8.0;

205   

206   /**

207   * @dev Wrappers over Solidity's arithmetic operations with added overflow

208   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 417

low SEVERITY
The current pragma Solidity directive is "">=0.6.2<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

416   

417   pragma solidity >=0.6.2 <0.8.0;

418   

419   /**

420   * @dev Collection of functions related to the address type

421   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 606

low SEVERITY
The current pragma Solidity directive is "">=0.4.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

605   

606   pragma solidity >=0.4.0;

607   

608   

609   

610   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 925

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

924   

925   pragma solidity >=0.6.2;

926   

927   interface IUniswapV2Router01 {

928   function factory() external pure returns (address);

929   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1023

low SEVERITY
The current pragma Solidity directive is "">=0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

1022   

1023   pragma solidity >=0.6.2;

1024   

1025   

1026   interface IUniswapV2Router02 is IUniswapV2Router01 {

1027   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1069

low SEVERITY
The current pragma Solidity directive is "">=0.5.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

1068   

1069   pragma solidity >=0.5.0;

1070   

1071   interface IUniswapV2Pair {

1072   event Approval(address indexed owner, address indexed spender, uint value);

1073   



Cougar Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1124

low SEVERITY
The current pragma Solidity directive is "">=0.5.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- CougarToken.sol 

Locations

1123   

1124   pragma solidity >=0.5.0;

1125   

1126   interface IUniswapV2Factory {

1127   event PairCreated(address indexed token0, address indexed token1, address pair, 

uint);

1128   



Cougar Token | Security Analysis

SWC-116 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.TIMESTAMP ENVIRONMENT VARIABLE.
LINE 1429

low SEVERITY
The block.timestamp environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners. 

Source File
- CougarToken.sol 

Locations

1428   require(nonce == nonces[signatory]++, "COUGAR::delegateBySig: invalid nonce");

1429   require(now <= expiry, "COUGAR::delegateBySig: signature expired");

1430   return _delegate(signatory, delegatee);

1431   }

1432   

1433   



Cougar Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1459

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners. 

Source File
- CougarToken.sol 

Locations

1458   {

1459   require(blockNumber < block.number, "COUGAR::getPriorVotes: not yet determined");

1460   

1461   uint32 nCheckpoints = numCheckpoints[account];

1462   if (nCheckpoints == 0) {

1463   



Cougar Token | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1532

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners. 

Source File
- CougarToken.sol 

Locations

1531   {

1532   uint32 blockNumber = safe32(block.number, "COUGAR::_writeCheckpoint: block number 

exceeds 32 bits");

1533   

1534   if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == 

blockNumber) {

1535   checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;

1536   



Cougar Token | Security Analysis

SWC-120 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.NUMBER ENVIRONMENT VARIABLE.
LINE 1459

low SEVERITY
The block.number environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners. 

Source File
- CougarToken.sol 

Locations

1458   {

1459   require(blockNumber < block.number, "COUGAR::getPriorVotes: not yet determined");

1460   

1461   uint32 nCheckpoints = numCheckpoints[account];

1462   if (nCheckpoints == 0) {

1463   



Cougar Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



Cougar Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


