Qatar World Cup

Smart Contract
Audit Report

@ SYSFIXED 17 Nov 2022

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

Qatar World Cup | Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

Qatar World Cup | Security Analysis

Project name

Token ticker

Blockchain

Qatar World Cup

QwWcC

Ethereum

| Addresses

Contract address

OxFB50df8a2C54fe5eAE220E138D6215B1Ea27f969

Contract deployer address

0xa962d2CD77fC7068BAAe525283910D8B6CD26F42

| Project Website

https://qwcworldcup.org/

| Codebase

https://etherscan.io/address/0xFB50df8a2C54fe5eAE220E138D6215B1Ea27f969+#code

https://qwcworldcup.org/
https://etherscan.io/address/0xFB50df8a2C54fe5eAE220E138D6215B1Ea27f969#code

@ SYSFIXED Qatar World Cup | Security Analysis

SUMMARY

The future of cryptocurrency has arrived, along with Staking, the DAO platform, and the potential Metaverse!
Blockchain applications can be found all over the world, and crypto betting is not far behind. It is evident with
decentralised sports betting platforms. These are altering the way we bet and will pave the way for a
decentralised and community-driven betting activity.

| Contract Summary

Documentation Quality
Qatar World Cup provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by Qatar World Cup with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 157 and 190.

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 39, 51, 61, 62, 73, 83, 231, 231, 249, 249, 250, 250, 345, 351, 351, 363 and 363.

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 11.

SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 233, 234, 235, 237, 238, 239, 241, 242, 243, 249, 250, 253, 254, 346,
490 and 491.

@ SYSFIXED Qatar World Cup | Security Analysis

CONCLUSION

We have audited the Qatar World Cup project released on Novemberr 2022 to discover issues and identify
potential security vulnerabilities in Qatar World Cup Project. This process is used to find technical issues and
security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the Qatar World Cup smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a state variable visibility is not set and out of bounds
array access which the index access expression can cause an exception in case of the use of an invalid array
index value.

£ SYSFIXED

AUDIT RESULT

Qatar World Cup | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 - . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a ISSUE
Assert Violation N
SWC-123 failing assert statement. FOUND
Deprecated Solidity o)
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

Qatar World Cup | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Qatar World Cup | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.

@ SYSFIXED Qatar World Cup | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Nov 16 2022 23:54:33 GMT+0000 (Coordinated Universal Time)
Finished Thursday Nov 17 2022 15:00:32 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File QatarWorldCup.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

£ SYSFIXED

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

£ SYSFIXED

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged
SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED

LINE 39

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

38 function add(uint256 a, uint256 b) internal pure returns (uint256) {
39 uint256 ¢ = a + b;

40 require(c >= a, "SafeMath: addition overflow');

41

42 return c;

43

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 51

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

50 require(b <= a, errorMessage);
51 uint256 ¢ = a - b;

52
53 return c;
54 }

55

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 61

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

60

61 uint256 ¢ = a * b;

62 require(c / a == b, "SafeMath: multiplication overflow');
63

64 return c;

65

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 62

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

61 uint256 ¢ = a * b;
62 require(c / a == b, "SafeMath: nultiplication overflow");

63
64 return c;
65 }

66

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 73

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

72 require(b > 0, errorMessage);
73 uint256 ¢ = a / b;

74 return c;

75}

76

77

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 83

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

82 require(b !'= 0, errorMessage);
83 return a % b;

84 }
85 }
86

87

£ SYSFIXED

Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED

LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source

File

- QatarWorldCup.sol

_total Supply = _SUPPLY * 10**_deci mal s;

Locations
230 _decimals = 9;
231
232
233 _buyLi qui di t yFee
234 _buyMar ket i ngFee

235

_BUYFEE[0] ;
_BUYFEE] 1] ;

£ SYSFIXED

Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED

LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source

File

- QatarWorldCup.sol

_total Supply = _SUPPLY * 10**_deci mal s;

Locations
230 _decimals = 9;
231
232
233 _buyLi qui di t yFee
234 _buyMar ket i ngFee

235

_BUYFEE[0] ;
_BUYFEE] 1] ;

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 249

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations
248
249 _txLimtAmunt = _LMI[0] * 10**_deci mal s;
250 ~walletLimtAmount = LMI[1] * 10** deci mal s;
251

252 m ni numTokensBef oreSwap = _total Supply. nul (1).div(10000);
253

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 249

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations
248
249 _txLimtAmunt = _LMI[0] * 10**_deci mal s;
250 ~walletLimtAmount = LMI[1] * 10** deci mal s;
251

252 m ni numTokensBef oreSwap = _total Supply. nul (1).div(10000);
253

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 250

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations
249 _txLimtAmunt = _LMI[0] * 10**_deci mal s;
250 _walletLimtAmunt = _LMI[1] * 10**_deci mal s;
251

252 m ni numlrokensBef oreSwap = _total Supply. mul (1).div(10000);
253 Mar keti ngWal | et = payabl e(_wal l etList[0]);
254

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 250

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations
249 _txLimtAmunt = _LMI[0] * 10**_deci mal s;
250 _walletLimtAmunt = _LMI[1] * 10**_deci mal s;
251

252 m ni numlrokensBef oreSwap = _total Supply. mul (1).div(10000);
253 Mar keti ngWal | et = payabl e(_wal l etList[0]);
254

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 345

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

344 requi re(addresses. |l ength < 201);

345 for (uint256 i; i < addresses.length; ++i) {
346 i sExcl udedFr ontee[addresses[i]] = status;
347 }

348 }

349

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 351

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

350 function set TxLi mi t Amount (ui nt 256 newval ue) external onlyOaner() {
351 _txLimitAnount = newvalue * 10 ** deci mal s();

352 }

353

354 function enabl eWal | et Li mi t Enabl e(bool newval ue) external onlyOaner {
355

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 351

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

350 function set TxLi mi t Amount (ui nt 256 newval ue) external onlyOaner() {
351 _txLimitAnount = newvalue * 10 ** deci mal s();

352 }

353

354 function enabl eWal | et Li mi t Enabl e(bool newval ue) external onlyOaner {
355

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 363

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

362 function setWall etLimtAnmount (ui nt 256 newVal ue) external onlyOmer {

363 _walletLimtAnunt = newValue * 10 ** decimal s();

364 }

365

366 function set NunifokensBef or eSwap(ui nt 256 newVal ue) external onlyOmer () {
367

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 363

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- QatarWorldCup.sol

Locations

362 function setWall etLimtAnmount (ui nt 256 newVal ue) external onlyOmer {

363 _walletLimtAnunt = newValue * 10 ** decimal s();

364 }

365

366 function set NunifokensBef or eSwap(ui nt 256 newVal ue) external onlyOmer () {
367

@ SYSFIXED Qatar World Cup | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY

The current pragma Solidity directive is ""*0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- QatarWorldCup.sol

Locations

10 // SPDX-License-ldentifier: MT

11 pragma solidity ~0.8.0;

12

13 abstract contract Context {

14 function _nsgSender() internal view virtual returns (address payable) {
15

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 157

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- QatarWorldCup.sol

Locations

156

157 mappi ng (address => uint256) _bal ances;

158 nappi ng (address => mappi ng (address => ui nt256)) private _all owances;
159

160

161

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 190

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- QatarWorldCup.sol

Locations

189

190 bool i nSwapAndLi qui fy;

191 bool public swapAndLi qui f yEnabl ed = true;

192 bool public swapAndLi qui fyBySmal |l Only = fal se;
193 bool public walletLimtEnable = true;

194

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 233

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

232

233 _DbuylLiquidityFee = _BUYFEE[0];
234 _buyMar ket i ngFee = BUYFEE[1] ;
235 _buyTeantee = _BUYFEE[2] ;

236

237

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 234

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

233 _buyliquidityFee = _BUYFEE[0];
234 _buyMarketingFee = _BUYFEE[1];
235 _buyTeantee = BUYFEE[2] ;

236

237 _sellLiquidityFee = _SELLFEE[O];
238

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 235

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

234 _buyMarketingFee = _BUYFEE[1];
235 _buyTeantee = _BUYFEE] 2] ;

236

237 _sel | Liqui di tyFee
238 _sel | Marketi ngFee
239

_SELLFEE[0] ;
_SELLFEE[1] ;

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 237

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

236

237 _selllLiquidityFee = _SELLFEE[O0];
238 _sel | MarketingFee = SELLFEE[1];
239 _sel | TeanfFee = _SELLFEE[2];

240

241

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 238

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

237 _selllLiquidityFee = _SELLFEE[O0];
238 _sel | MarketingFee = _SELLFEE[1];
239 _sel | TeanfFee = SELLFEE[2];

240

241 _liquidityShare = _SHARE[0] ;

242

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 239

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

238 _sel |l MarketingFee = _SELLFEE[1];
239 _sell TeanFee = _SELLFEF[2];

240
241 _liquidityShare = SHARE[0] ;
242 _marketingShare = _SHARE[1];

243

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 241

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations
240
241 _liquidityShare = _SHARE[0] ;
242 _marketingShare = SHARE[1] ;

243 _teanthare = _SHARE[2] ;
244
245

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 242

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

241 _liquidityShare = _SHARE[0] ;

242 _marketingShare = _SHARE[1] ;

243 _teanthare = SHARE[2] ;

244

245 _total Taxl f Buyi ng = _buyLi qui di t yFee. add(_buyMar ket i ngFee) . add(_buyTeanfee) ;
246

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 243

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

242 _marketingShare = _SHARE[1] ;

243 _teanthare = _SHARE[2];

244

245 _total Taxl fBuyi ng = _buyLi qui di t yFee. add(_buyMar ket i ngFee) . add(_buyTeantee) ;

246 _total TaxlfSelling = _sellLiquidityFee.add(_sell MarketingFee).add(_sel | Teanfee);
247

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 249

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations
248
249 _txLimtAmunt = _LMI[0] * 10**_deci mal s;
250 ~walletLimtAmount = LMI[1] * 10** deci mal s;
251
252 m ni numTokensBef oreSwap = _total Supply. nul (1).div(10000);
253

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 250

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations
249 _txLimtAmunt = _LMI[0] * 10**_deci mal s;
250 _walletLimtAmunt = _LMI[1] * 10**_deci mal s;
251

252 m ni numlrokensBef oreSwap = _total Supply. mul (1).div(10000);
253 Mar keti ngWal | et = payabl e(_wal l etList[0]);
254

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS

LINE 253

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations
252 m ni nunTokensBef oreSwap = _total Supply. mul (1).div(10000);
253 Mar keti ngWal | et = payabl e(_wal l etList[0]);
254 TreasuryWal | et = payable(_wal l etList[1]);
255
256 I Uni swapV2Rout er 02 _uni swapV2Rout er =

257

I Uni swapV2Rout er 02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D) ;

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 254

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

253 Mar ket i ng\Wal | et = payabl e(_wal l etList[0]);

254 TreasuryWal | et = payable(_walletList[1]);

255

256 I Uni swapV2Rout er 02 _uni swapV2Rout er =

I Uni swapV2Rout er 02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D) ;
257 uni swapPai r = | Uni swapV2Fact ory(_uni swapV2Rout er. factory())
258

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 346

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations
345 for (uint256 i; i < addresses.length; ++i) {
346 i sExcl udedFr onfFee[addresses[i]] = status;
347 }
348 }
349
350

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 490

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

489 address[] nenory path = new address[](2);

490 pat h[0] address(this);

491 pat h[1] uni swapV2Rout er . WETH() ;

492

493 _approve(address(this), address(uni swapV2Router), tokenAnount);
494

@S\"SH}I{ED Qatar World Cup | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 491

low SEVERITY

The index access expression can cause an exception in case of use of invalid array index value.

Source File
- QatarWorldCup.sol

Locations

490 pat h[0]
491 pat h[1]
492

493 _approve(address(this), address(uni swapV2Router), tokenAnount);
494

495

address(this);
uni swapV2Rout er . WETH() ;

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@‘S\"SH}I{ED Qatar World Cup | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

