
APEBORG

Smart Contract
Audit Report

24 Apr 2022



APEBORG | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



APEBORG | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

APEBORG APEBORG Ethereum

| Addresses

Contract address 0xf168d4f47a973a65f61bfb46f924fe7489c74576

Contract deployer address 0xdF22e8B5dF7d6472f875DC3752215089cd8ebC5a

| Project Website

https://apeborg.com/ 

| Codebase

https://etherscan.io/address/0xf168d4f47a973a65f61bfb46f924fe7489c74576#code 

https://apeborg.com/
https://etherscan.io/address/0xf168d4f47a973a65f61bfb46f924fe7489c74576#code


APEBORG | Security Analysis

SUMMARY

APEBORG is a decentralized Meme Token with a NFT Platform, own NFT Collections and a P2E Game to earn
and collect tokens. In addition, the APEBORG holders benefit from the reflections on every transaction. This is
an auto staking feature. Furthermore, charity activities for people and animals are carried out

| Contract Summary

Documentation Quality

APEBORG provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by APEBORG with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 974.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 125, 161, 184, 185, 224, 264, 536, 946, 946, 946, 946, 947, 947, 977, 977, 977, 977, 978, 978, 978,
978, 979, 979, 979, 979, 1215, 1218, 1239, 1241, 1300, 1307, 1370, 1391, 1399, 1456, 1218 and 1241.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 15.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1216, 1217, 1217, 1240, 1241, 1241, 1372, 1373, 1375, 1376, 1531
and 1532.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 1450.



APEBORG | Security Analysis

CONCLUSION

We have audited the NamaFile project released on January 2023 to discover issues and identify potential
security vulnerabilities in NamaFile Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the NamaFile smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.
We recommend to It is recommended to specify a fixed compiler version to ensure that the bytecode produced
does not vary between builds. This is especially important if you rely on bytecode-level verification of the code
also avoiding using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider
using "msg.sender" unless you really know what you are doing.



APEBORG | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



APEBORG | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS



APEBORG | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS



APEBORG | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Apr 23 2022 19:30:57 GMT+0000 (Coordinated Universal Time)

Finished Sunday Apr 24 2022 20:49:35 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File APEBORG.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 125

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

124   function add(uint256 a, uint256 b) internal pure returns (uint256) {

125   uint256 c = a + b;

126   require(c >= a, "SafeMath: addition overflow");

127   

128   return c;

129   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 161

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

160   require(b <= a, errorMessage);

161   uint256 c = a - b;

162   

163   return c;

164   }

165   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 184

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

183   

184   uint256 c = a * b;

185   require(c / a == b, "SafeMath: multiplication overflow");

186   

187   return c;

188   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 185

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

184   uint256 c = a * b;

185   require(c / a == b, "SafeMath: multiplication overflow");

186   

187   return c;

188   }

189   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 224

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

223   require(b > 0, errorMessage);

224   uint256 c = a / b;

225   // assert(a == b * c + a % b); // There is no case in which this doesn't hold

226   

227   return c;

228   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 264

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

263   require(b != 0, errorMessage);

264   return a % b;

265   }

266   }

267   

268   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 536

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

535   _owner = address(0);

536   _lockTime = block.timestamp + time;

537   emit OwnershipTransferred(_owner, address(0));

538   }

539   

540   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

945   uint256 private constant MAX = ~uint256(0);

946   uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

947   uint256 private _rTotal = (MAX - (MAX % _tTotal));

948   uint256 private _tFeeTotal;

949   

950   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

945   uint256 private constant MAX = ~uint256(0);

946   uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

947   uint256 private _rTotal = (MAX - (MAX % _tTotal));

948   uint256 private _tFeeTotal;

949   

950   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

945   uint256 private constant MAX = ~uint256(0);

946   uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

947   uint256 private _rTotal = (MAX - (MAX % _tTotal));

948   uint256 private _tFeeTotal;

949   

950   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

945   uint256 private constant MAX = ~uint256(0);

946   uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

947   uint256 private _rTotal = (MAX - (MAX % _tTotal));

948   uint256 private _tFeeTotal;

949   

950   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 947

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

946   uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

947   uint256 private _rTotal = (MAX - (MAX % _tTotal));

948   uint256 private _tFeeTotal;

949   

950   

951   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 947

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

946   uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

947   uint256 private _rTotal = (MAX - (MAX % _tTotal));

948   uint256 private _tFeeTotal;

949   

950   

951   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 977

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

976   

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 977

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

976   

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 977

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

976   

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 977

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

976   

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 978

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 978

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 978

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 978

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 979

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   event botRemovedFromBlacklist(address account);

983   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 979

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   event botRemovedFromBlacklist(address account);

983   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 979

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   event botRemovedFromBlacklist(address account);

983   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 979

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

978   uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

979   uint256 public _maxWalletSize = 1 * 10**13 * 10**9;

980   

981   event botAddedToBlacklist(address account);

982   event botRemovedFromBlacklist(address account);

983   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1215

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1214   require(_isBlackListedBot[account], "Account is not blacklisted");

1215   for (uint256 i = 0; i < _blackListedBots.length; i++) {

1216   if (_blackListedBots[i] == account) {

1217   _blackListedBots[i] = _blackListedBots[

1218   _blackListedBots.length - 1

1219   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1218

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1217   _blackListedBots[i] = _blackListedBots[

1218   _blackListedBots.length - 1

1219   ];

1220   _isBlackListedBot[account] = false;

1221   _blackListedBots.pop();

1222   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1239

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1238   require(_isExcluded[account], "Account is not excluded");

1239   for (uint256 i = 0; i < _excluded.length; i++) {

1240   if (_excluded[i] == account) {

1241   _excluded[i] = _excluded[_excluded.length - 1];

1242   _tOwned[account] = 0;

1243   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1241

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1240   if (_excluded[i] == account) {

1241   _excluded[i] = _excluded[_excluded.length - 1];

1242   _tOwned[account] = 0;

1243   _isExcluded[account] = false;

1244   _excluded.pop();

1245   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1300

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1299   function setMaxTxPercent(uint256 maxTxPercent) external onlyOwner {

1300   _maxTxAmount = _tTotal.mul(maxTxPercent).div(10**2);

1301   }

1302   

1303   function _setMaxWalletSizePercent(uint256 maxWalletSize)

1304   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1307

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1306   {

1307   _maxWalletSize = _tTotal.mul(maxWalletSize).div(10**2);

1308   }

1309   

1310   function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {

1311   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1370

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1369   uint256 tSupply = _tTotal;

1370   for (uint256 i = 0; i < _excluded.length; i++) {

1371   if (

1372   _rOwned[_excluded[i]] > rSupply ||

1373   _tOwned[_excluded[i]] > tSupply

1374   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1391

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1390   function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1391   return _amount.mul(_taxFee).div(10**2);

1392   }

1393   

1394   function calculateLiquidityFee(uint256 _amount)

1395   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1399

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1398   {

1399   return _amount.mul(_liquidityFee).div(10**2);

1400   }

1401   

1402   function removeAllFee() private {

1403   



APEBORG | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1456

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1455   if(to != uniswapV2Pair) {

1456   require(balanceOf(to) + amount < _maxWalletSize, "TOKEN: Balance exceeds wallet 

size!");

1457   }

1458   }

1459   

1460   



APEBORG | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1218

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1217   _blackListedBots[i] = _blackListedBots[

1218   _blackListedBots.length - 1

1219   ];

1220   _isBlackListedBot[account] = false;

1221   _blackListedBots.pop();

1222   



APEBORG | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1241

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- APEBORG.sol 

Locations

1240   if (_excluded[i] == account) {

1241   _excluded[i] = _excluded[_excluded.length - 1];

1242   _tOwned[account] = 0;

1243   _isExcluded[account] = false;

1244   _excluded.pop();

1245   



APEBORG | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 15

low SEVERITY
The current pragma Solidity directive is ""^0.8.10"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- APEBORG.sol 

Locations

14   /// @custom:security-contact contact@apeborg.com

15   pragma solidity ^0.8.10;

16   

17   // SPDX-License-Identifier: Unlicensed

18   interface IERC20 {

19   



APEBORG | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 974

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private. 

Source File
- APEBORG.sol 

Locations

973   

974   bool inSwapAndLiquify;

975   bool public swapAndLiquifyEnabled = true;

976   

977   uint256 public _maxTxAmount = 1000000000 * 10**6 * 10**9;

978   



APEBORG | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 1450

low SEVERITY
Using "tx.origin" as a security control can lead to authorization bypass vulnerabilities. Consider using
"msg.sender" unless you really know what you are doing. 

Source File
- APEBORG.sol 

Locations

1449   require(!_isBlackListedBot[msg.sender], "you are blacklisted");

1450   require(!_isBlackListedBot[tx.origin], "blacklisted");

1451   

1452   if (!_isExcludedFromLimit[from] && !_isExcludedFromLimit[to]) {

1453   require(amount <= _maxTxAmount,"Transfer amount exceeds the maxTxAmount.");

1454   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1216

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1215   for (uint256 i = 0; i < _blackListedBots.length; i++) {

1216   if (_blackListedBots[i] == account) {

1217   _blackListedBots[i] = _blackListedBots[

1218   _blackListedBots.length - 1

1219   ];

1220   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1217

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1216   if (_blackListedBots[i] == account) {

1217   _blackListedBots[i] = _blackListedBots[

1218   _blackListedBots.length - 1

1219   ];

1220   _isBlackListedBot[account] = false;

1221   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1217

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1216   if (_blackListedBots[i] == account) {

1217   _blackListedBots[i] = _blackListedBots[

1218   _blackListedBots.length - 1

1219   ];

1220   _isBlackListedBot[account] = false;

1221   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1240

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1239   for (uint256 i = 0; i < _excluded.length; i++) {

1240   if (_excluded[i] == account) {

1241   _excluded[i] = _excluded[_excluded.length - 1];

1242   _tOwned[account] = 0;

1243   _isExcluded[account] = false;

1244   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1241

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1240   if (_excluded[i] == account) {

1241   _excluded[i] = _excluded[_excluded.length - 1];

1242   _tOwned[account] = 0;

1243   _isExcluded[account] = false;

1244   _excluded.pop();

1245   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1241

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1240   if (_excluded[i] == account) {

1241   _excluded[i] = _excluded[_excluded.length - 1];

1242   _tOwned[account] = 0;

1243   _isExcluded[account] = false;

1244   _excluded.pop();

1245   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1372

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1371   if (

1372   _rOwned[_excluded[i]] > rSupply ||

1373   _tOwned[_excluded[i]] > tSupply

1374   ) return (_rTotal, _tTotal);

1375   rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1376   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1373

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1372   _rOwned[_excluded[i]] > rSupply ||

1373   _tOwned[_excluded[i]] > tSupply

1374   ) return (_rTotal, _tTotal);

1375   rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1376   tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1377   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1375

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1374   ) return (_rTotal, _tTotal);

1375   rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1376   tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1377   }

1378   if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1379   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1376

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1375   rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1376   tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1377   }

1378   if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1379   return (rSupply, tSupply);

1380   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1531

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1530   address[] memory path = new address[](2);

1531   path[0] = address(this);

1532   path[1] = uniswapV2Router.WETH();

1533   

1534   _approve(address(this), address(uniswapV2Router), tokenAmount);

1535   



APEBORG | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1532

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- APEBORG.sol 

Locations

1531   path[0] = address(this);

1532   path[1] = uniswapV2Router.WETH();

1533   

1534   _approve(address(this), address(uniswapV2Router), tokenAmount);

1535   

1536   



APEBORG | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



APEBORG | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


