
MetaPionner Token

Smart Contract
Audit Report

22 Nov 2022

MetaPionner Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MetaPionner Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MetaPionner Token MPI Binance Smart Chain

| Addresses

Contract address 0x82555cc48a532fa4e2194ab883eb6d465149f80e

Contract deployer address 0x24A193da3efE2404fA2C1c7b0D89Dd90f16443B4

| Project Website

https://metapi.xyz/

| Codebase

https://bscscan.com/address/0x82555cc48a532fa4e2194ab883eb6d465149f80e#code

https://metapi.xyz/
https://bscscan.com/address/0x82555cc48a532fa4e2194ab883eb6d465149f80e#code

MetaPionner Token | Security Analysis

SUMMARY

MetaPioneers is an NFTfi project in the Web3 space that combines the power of DeFi & NFTs to create an
entertaining DApp earning its users' sustainable yield in perpetuity.

| Contract Summary

Documentation Quality

MetaPionner Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MetaPionner Token with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 1075, 1077 and 1079.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 311, 334, 367, 369, 390, 391, 416, 418, 467, 655, 656, 660, 661, 661, 662, 677, 687, 687, 690, 690,
690, 1131 and 1138.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 661, 688, 689, 691, 691, 1132 and 1139.

MetaPionner Token | Security Analysis

CONCLUSION

We have audited the MetaPionner Token project released on November 2022 to discover issues and identify
potential security vulnerabilities in MetaPionner Token Project. This process is used to find technical issues
and security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the MetaPionner Token smart contract code do not pose a considerable risk. The writing
of the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds
array access which the index access expression can cause an exception in case of the use of an invalid array
index value.

MetaPionner Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

MetaPionner Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

MetaPionner Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

MetaPionner Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Nov 21 2022 20:01:38 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Nov 22 2022 01:32:17 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MetaPionnerToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "--" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 311

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

310 address owner = _msgSender();

311 _approve(owner, spender, allowance(owner, spender) + addedValue);

312 return true;

313 }

314

315

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 334

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

333 unchecked {

334 _approve(owner, spender, currentAllowance - subtractedValue);

335 }

336

337 return true;

338

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 367

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

366 unchecked {

367 _balances[from] = fromBalance - amount;

368 }

369 _balances[to] += amount;

370

371

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 369

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

368 }

369 _balances[to] += amount;

370

371 emit Transfer(from, to, amount);

372

373

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 390

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

389

390 _totalSupply += amount;

391 _balances[account] += amount;

392 emit Transfer(address(0), account, amount);

393

394

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 391

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

390 _totalSupply += amount;

391 _balances[account] += amount;

392 emit Transfer(address(0), account, amount);

393

394 _afterTokenTransfer(address(0), account, amount);

395

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 416

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

415 unchecked {

416 _balances[account] = accountBalance - amount;

417 }

418 _totalSupply -= amount;

419

420

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 418

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

417 }

418 _totalSupply -= amount;

419

420 emit Transfer(account, address(0), amount);

421

422

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 467

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

466 unchecked {

467 _approve(owner, spender, currentAllowance - amount);

468 }

469 }

470 }

471

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 655

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

654 while (temp != 0) {

655 digits++;

656 temp /= 10;

657 }

658 bytes memory buffer = new bytes(digits);

659

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 656

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

655 digits++;

656 temp /= 10;

657 }

658 bytes memory buffer = new bytes(digits);

659 while (value != 0) {

660

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 660

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

659 while (value != 0) {

660 digits -= 1;

661 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

662 value /= 10;

663 }

664

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 661

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

660 digits -= 1;

661 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

662 value /= 10;

663 }

664 return string(buffer);

665

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 661

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

660 digits -= 1;

661 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

662 value /= 10;

663 }

664 return string(buffer);

665

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/=" DISCOVERED
LINE 662

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

661 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

662 value /= 10;

663 }

664 return string(buffer);

665 }

666

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 677

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

676 while (temp != 0) {

677 length++;

678 temp >>= 8;

679 }

680 return toHexString(value, length);

681

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 687

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

686 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

687 bytes memory buffer = new bytes(2 * length + 2);

688 buffer[0] = "0";

689 buffer[1] = "x";

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 687

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

686 function toHexString(uint256 value, uint256 length) internal pure returns (string

memory) {

687 bytes memory buffer = new bytes(2 * length + 2);

688 buffer[0] = "0";

689 buffer[1] = "x";

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

689 buffer[1] = "x";

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691 buffer[i] = _HEX_SYMBOLS[value & 0xf];

692 value >>= 4;

693 }

694

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

689 buffer[1] = "x";

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691 buffer[i] = _HEX_SYMBOLS[value & 0xf];

692 value >>= 4;

693 }

694

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "--" DISCOVERED
LINE 690

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

689 buffer[1] = "x";

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691 buffer[i] = _HEX_SYMBOLS[value & 0xf];

692 value >>= 4;

693 }

694

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1131

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

1130 function setbuyList(address[] memory _buyList) public onlyRole(SUPER) {

1131 for(uint i=0;i<_buyList.length;i++) {

1132 buyList[_buyList[i]] = true;

1133 }

1134 }

1135

MetaPionner Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MetaPionnerToken.sol

Locations

1137 function setsellList(address[] memory _sellList) public onlyRole(SUPER) {

1138 for(uint i=0;i<_sellList.length;i++) {

1139 sellList[_sellList[i]] = true;

1140 }

1141 }

1142

MetaPionner Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaPionnerToken.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity ^0.8.4;

7

8 // OpenZeppelin Contracts (last updated v4.5.0)

(token/ERC20/extensions/ERC20Burnable.sol)

9

10

MetaPionner Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1075

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "realBurn" is internal.
Other possible visibility settings are public and private.

Source File
- MetaPionnerToken.sol

Locations

1074

1075 bool realBurn;

1076 mapping(address => bool) private buyList;

1077 bool openbuyList;

1078 mapping(address => bool) private sellList;

1079

MetaPionner Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1077

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "openbuyList" is
internal. Other possible visibility settings are public and private.

Source File
- MetaPionnerToken.sol

Locations

1076 mapping(address => bool) private buyList;

1077 bool openbuyList;

1078 mapping(address => bool) private sellList;

1079 bool opensellList;

1080

1081

MetaPionner Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1079

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "opensellList" is
internal. Other possible visibility settings are public and private.

Source File
- MetaPionnerToken.sol

Locations

1078 mapping(address => bool) private sellList;

1079 bool opensellList;

1080

1081 bytes32 public constant EXTERN = bytes32(keccak256(abi.encodePacked("EXTERN")));

1082 bytes32 public constant SUPER = bytes32(keccak256(abi.encodePacked("MPI_SUPER")));

1083

MetaPionner Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 661

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaPionnerToken.sol

Locations

660 digits -= 1;

661 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

662 value /= 10;

663 }

664 return string(buffer);

665

MetaPionner Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 688

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaPionnerToken.sol

Locations

687 bytes memory buffer = new bytes(2 * length + 2);

688 buffer[0] = "0";

689 buffer[1] = "x";

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691 buffer[i] = _HEX_SYMBOLS[value & 0xf];

692

MetaPionner Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 689

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaPionnerToken.sol

Locations

688 buffer[0] = "0";

689 buffer[1] = "x";

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691 buffer[i] = _HEX_SYMBOLS[value & 0xf];

692 value >>= 4;

693

MetaPionner Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 691

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaPionnerToken.sol

Locations

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691 buffer[i] = _HEX_SYMBOLS[value & 0xf];

692 value >>= 4;

693 }

694 require(value == 0, "Strings: hex length insufficient");

695

MetaPionner Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 691

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaPionnerToken.sol

Locations

690 for (uint256 i = 2 * length + 1; i > 1; --i) {

691 buffer[i] = _HEX_SYMBOLS[value & 0xf];

692 value >>= 4;

693 }

694 require(value == 0, "Strings: hex length insufficient");

695

MetaPionner Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1132

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaPionnerToken.sol

Locations

1131 for(uint i=0;i<_buyList.length;i++) {

1132 buyList[_buyList[i]] = true;

1133 }

1134 }

1135

1136

MetaPionner Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1139

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MetaPionnerToken.sol

Locations

1138 for(uint i=0;i<_sellList.length;i++) {

1139 sellList[_sellList[i]] = true;

1140 }

1141 }

1142

1143

MetaPionner Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MetaPionner Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

