
SOOMA

Smart Contract
Audit Report

06 Nov 2022

SOOMA | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

SOOMA | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

SOOMA SOA Binance Smart Chain

| Addresses

Contract address 0x9a30B72A793a716920cF985Fd9Ae3a3cb278C3a2

Contract deployer address 0x9C0B62E8535849857933efdAB7772e3E468357ee

| Project Website

https://sooma.io/

| Codebase

https://bscscan.com/address/0x9a30B72A793a716920cF985Fd9Ae3a3cb278C3a2#code

https://sooma.io/
https://bscscan.com/address/0x9a30B72A793a716920cF985Fd9Ae3a3cb278C3a2#code

SOOMA | Security Analysis

SUMMARY

SOOMA (SOA) is a multipurpose deflation token on the bsc platform. After the launch of the project, 2% of the
total amount will be burned every month according to Tokenomics.

| Contract Summary

Documentation Quality

SOOMA provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by SOOMA with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 629.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 25, 33, 39, 40, 47, 53, 57, 60, 63, 66, 69, 74, 80, 86, 225, 604, 605, 632, 634, 827, 945, 966, 974 and
829.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 9.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 828, 829, 947, 948, 950, 951, 1078 and 1079.

SOOMA | Security Analysis

CONCLUSION

We have audited the SOOMA project which has released on November 2022 to discover issues and identify
potential security vulnerabilities in SOOMA Project. This process is used to find technical issues and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. The low-level issues found are some arithmetic operation
issues, a floating pragma is set, a state variable visibility is not set and out of bounds array access which the
index access expression can cause an exception in case of use of an invalid array index value.

SOOMA | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

SOOMA | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

SOOMA | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Nov 05 2022 12:16:57 GMT+0000 (Coordinated Universal Time)

Finished Sunday Nov 06 2022 11:20:13 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File SOOMA.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 25

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

24 unchecked {

25 uint256 c = a + b;

26 if (c < a) return (false, 0);

27 return (true, c);

28 }

29

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 33

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

32 if (b > a) return (false, 0);

33 return (true, a - b);

34 }

35 }

36 function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {

37

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 39

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

38 if (a == 0) return (true, 0);

39 uint256 c = a * b;

40 if (c / a != b) return (false, 0);

41 return (true, c);

42 }

43

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 40

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

39 uint256 c = a * b;

40 if (c / a != b) return (false, 0);

41 return (true, c);

42 }

43 }

44

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 47

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

46 if (b == 0) return (false, 0);

47 return (true, a / b);

48 }

49 }

50 function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {

51

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 53

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

52 if (b == 0) return (false, 0);

53 return (true, a % b);

54 }

55 }

56 function add(uint256 a, uint256 b) internal pure returns (uint256) {

57

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 57

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

56 function add(uint256 a, uint256 b) internal pure returns (uint256) {

57 return a + b;

58 }

59 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

60 return a - b;

61

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 60

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

59 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

60 return a - b;

61 }

62 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

63 return a * b;

64

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 63

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

62 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

63 return a * b;

64 }

65 function div(uint256 a, uint256 b) internal pure returns (uint256) {

66 return a / b;

67

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 66

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

65 function div(uint256 a, uint256 b) internal pure returns (uint256) {

66 return a / b;

67 }

68 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

69 return a % b;

70

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 69

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

68 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

69 return a % b;

70 }

71 function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns

(uint256) {

72 unchecked {

73

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 74

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

73 require(b <= a, errorMessage);

74 return a - b;

75 }

76 }

77 function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns

(uint256) {

78

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 80

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

79 require(b > 0, errorMessage);

80 return a / b;

81 }

82 }

83 function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns

(uint256) {

84

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 86

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

85 require(b > 0, errorMessage);

86 return a % b;

87 }

88 }

89 }

90

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 225

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

224 _owner = address(0);

225 _lockTime = block.timestamp + time;

226 emit OwnershipTransferred(_owner, address(0));

227 }

228

229

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 604

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

603 uint256 private constant MAX = ~uint256(0);

604 uint256 private _tTotal = 10000000000 * 10**18;

605 uint256 private _rTotal = (MAX - (MAX % _tTotal));

606 uint256 private _tFeeTotal;

607

608

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 605

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

604 uint256 private _tTotal = 10000000000 * 10**18;

605 uint256 private _rTotal = (MAX - (MAX % _tTotal));

606 uint256 private _tFeeTotal;

607

608 string private _name = "SOOMA";

609

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 632

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

631

632 uint256 public _maxTxAmount = 1000000* 10**18;

633

634 uint256 private numTokensSellToAddToLiquidity = 1000000* 10**18;

635

636

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 634

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

633

634 uint256 private numTokensSellToAddToLiquidity = 1000000* 10**18;

635

636 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

637 event SwapAndLiquifyEnabledUpdated(bool enabled);

638

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 827

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

826 require(_isExcluded[account], "Account is already excluded");

827 for (uint256 i = 0; i < _excluded.length; i++) {

828 if (_excluded[i] == account) {

829 _excluded[i] = _excluded[_excluded.length - 1];

830 _tOwned[account] = 0;

831

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 829

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

828 if (_excluded[i] == account) {

829 _excluded[i] = _excluded[_excluded.length - 1];

830 _tOwned[account] = 0;

831 _isExcluded[account] = false;

832 _excluded.pop();

833

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 945

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

944 uint256 tSupply = _tTotal;

945 for (uint256 i = 0; i < _excluded.length; i++) {

946 if (

947 _rOwned[_excluded[i]] > rSupply ||

948 _tOwned[_excluded[i]] > tSupply

949

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 966

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

965 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

966 return _amount.mul(_taxFee).div(10**2);

967 }

968

969 function calculateLiquidityFee(uint256 _amount)

970

SOOMA | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 974

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

973 {

974 return _amount.mul(_liquidityFee).div(10**2);

975 }

976

977 function removeAllFee() private {

978

SOOMA | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 829

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- SOOMA.sol

Locations

828 if (_excluded[i] == account) {

829 _excluded[i] = _excluded[_excluded.length - 1];

830 _tOwned[account] = 0;

831 _isExcluded[account] = false;

832 _excluded.pop();

833

SOOMA | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- SOOMA.sol

Locations

8

9 pragma solidity ^0.8.7;

10

11 interface IBEP20 {

12 function totalSupply() external view returns (uint256);

13

SOOMA | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 629

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- SOOMA.sol

Locations

628

629 bool inSwapAndLiquify;

630 bool public swapAndLiquifyEnabled = false;

631

632 uint256 public _maxTxAmount = 1000000* 10**18;

633

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 828

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

827 for (uint256 i = 0; i < _excluded.length; i++) {

828 if (_excluded[i] == account) {

829 _excluded[i] = _excluded[_excluded.length - 1];

830 _tOwned[account] = 0;

831 _isExcluded[account] = false;

832

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 829

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

828 if (_excluded[i] == account) {

829 _excluded[i] = _excluded[_excluded.length - 1];

830 _tOwned[account] = 0;

831 _isExcluded[account] = false;

832 _excluded.pop();

833

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 947

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

946 if (

947 _rOwned[_excluded[i]] > rSupply ||

948 _tOwned[_excluded[i]] > tSupply

949) return (_rTotal, _tTotal);

950 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

951

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 948

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

947 _rOwned[_excluded[i]] > rSupply ||

948 _tOwned[_excluded[i]] > tSupply

949) return (_rTotal, _tTotal);

950 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

951 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

952

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 950

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

949) return (_rTotal, _tTotal);

950 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

951 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

952 }

953 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

954

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 951

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

950 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

951 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

952 }

953 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

954 return (rSupply, tSupply);

955

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1078

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

1077 address[] memory path = new address[](2);

1078 path[0] = address(this);

1079 path[1] = uniswapV2Router.WETH();

1080

1081 _approve(address(this), address(uniswapV2Router), tokenAmount);

1082

SOOMA | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1079

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- SOOMA.sol

Locations

1078 path[0] = address(this);

1079 path[1] = uniswapV2Router.WETH();

1080

1081 _approve(address(this), address(uniswapV2Router), tokenAmount);

1082

1083

SOOMA | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

SOOMA | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

