
EthereumMax

Smart Contract
Audit Report

24 Feb 2022

EthereumMax | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

EthereumMax | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

EthereumMax EMAX Arbitrum

| Addresses

Contract address 0x123389C2f0e9194d9bA98c21E63c375B67614108

Contract deployer address 0x331626d097cc466f6544257c2Dc18f60f6382414

| Project Website

https://ethereummax.org/

| Codebase

https://arbiscan.io/address/0x123389C2f0e9194d9bA98c21E63c375B67614108#code

https://ethereummax.org/
https://arbiscan.io/address/0x123389C2f0e9194d9bA98c21E63c375B67614108#code

EthereumMax | Security Analysis

SUMMARY

EthereumMax (EMAX) is a progressive ERC-20 token built on the secure Ethereum network. We launched
EMAX with a vision to bridge the gap between the emergence of community-driven tokens and the well-known
foundational coins of crypto, creating a unique token that provides lifestyle perks with financial rewards and
incentives to its holders with a pathway for practical long-term use in everyday life. This is the essence of the
Culture Token.

| Contract Summary

Documentation Quality

EthereumMax provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by EthereumMax with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 558 and 588.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 42, 58, 68, 69, 84, 100, 807, 813, 938, 952, 977, 991, 995, 996, 1021, 1075, 1099 and 1107.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 892, 893, 897, 897, 1076, 1100, 1101 and 1108.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 807, 813 and
1034.

EthereumMax | Security Analysis

CONCLUSION

We have audited the EthereumMax project released in February 2022 to discover issues and identify potential
security vulnerabilities in EthereumMax Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the EthereumMax smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
and out-of-bounds array access which the index access expression can cause an exception in case of the use
of an invalid array index value. The environment variable "block.number" looks like it might be used as a source
of randomness. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of
earlier blocks. Don't use any of those environment variables as sources of randomness and be aware that use
of these variables introduces a certain level of trust into miners.

EthereumMax | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

EthereumMax | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

EthereumMax | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

EthereumMax | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Feb 23 2022 04:20:06 GMT+0000 (Coordinated Universal Time)

Finished Thursday Feb 24 2022 15:34:55 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File EMAX.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 42

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

41 function add(uint256 a, uint256 b) internal pure returns (uint256) {

42 uint256 c = a + b;

43 require(c >= a, "SafeMath: addition overflow");

44

45 return c;

46

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 58

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

57 require(b <= a, errorMessage);

58 uint256 c = a - b;

59

60 return c;

61 }

62

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 68

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

67

68 uint256 c = a * b;

69 require(c / a == b, "SafeMath: multiplication overflow");

70

71 return c;

72

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 69

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

68 uint256 c = a * b;

69 require(c / a == b, "SafeMath: multiplication overflow");

70

71 return c;

72 }

73

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 84

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

83 require(b > 0, errorMessage);

84 uint256 c = a / b;

85 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

86

87 return c;

88

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

99 require(b != 0, errorMessage);

100 return a % b;

101 }

102 }

103

104

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 807

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

806 //antibot - first X blocks

807 if (launchedAt > 0 && (launchedAt + deadBlocks) > block.number) {

808 _isSniper[to] = true;

809 }

810

811

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 813

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

812 if (

813 launchedAt > 0 && from != owner() && block.number <= (launchedAt + deadBlocks) &&

antiBotmode

814) {

815 currenttotalFee = 900; //90%

816 }

817

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 938

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

937

938 _balances[recipient] += amount;

939

940 emit Transfer(sender, recipient, amount);

941 }

942

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 952

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

951 } else {

952 uint256 calcualatedFee = tAmount.mul(curentTotalFee).div(10**3);

953 uint256 amountForRecipient = tAmount.sub(calcualatedFee);

954 _sendTransfer(sender, recipient, amountForRecipient);

955 _sendTransfer(sender, address(this), calcualatedFee);

956

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 977

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

976 require(to != address(0) && to != address(this), "Emax/invalid-address");

977 _balances[to] = _balances[to] + value; // note: we don't need an overflow check

here b/c balanceOf[to] <= _totalSupply and there is an overflow check below

978 _totalSupply = _totalSupply.add(value);

979 emit Transfer(address(0), to, value);

980 }

981

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 991

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

990

991 _allowances[from][msg.sender] = allowed - value;

992 }

993 }

994

995

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 995

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

994

995 _balances[from] = balance - value; // note: we don't need overflow checks b/c

require(balance >= value) and balance <= totalSupply

996 _totalSupply = _totalSupply - value;

997

998 emit Transfer(from, address(0), value);

999

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 996

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

995 _balances[from] = balance - value; // note: we don't need overflow checks b/c

require(balance >= value) and balance <= totalSupply

996 _totalSupply = _totalSupply - value;

997

998 emit Transfer(from, address(0), value);

999 }

1000

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1021

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

1020 chainId == deploymentChainId ? _DOMAIN_SEPARATOR :

_calculateDomainSeparator(chainId),

1021 keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++,

deadline))

1022)

1023);

1024

1025

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1075

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

1074 function excludeMultiple(address[] calldata addresses) external onlyOwner {

1075 for (uint256 i; i < addresses.length; ++i) {

1076 _isExcludedFromFee[addresses[i]] = true;

1077 }

1078 emit ExcludeMultiple(addresses, true);

1079

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1099

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

1098) external onlyOwner {

1099 for (uint256 i; i < addresses.length; ++i) {

1100 require(!_isTrusted[addresses[i]] || _override, "account is already trusted use

overide");

1101 _isSniper[addresses[i]] = status;

1102 }

1103

EthereumMax | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1107

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- EMAX.sol

Locations

1106 function manage_trusted(address[] calldata addresses, bool status) external

onlyOwner {

1107 for (uint256 i; i < addresses.length; ++i) {

1108 _isTrusted[addresses[i]] = status;

1109 }

1110 emit Manage_trusted(addresses, status);

1111

EthereumMax | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.6.11"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EMAX.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity ^0.6.11;

7

8 abstract contract Context {

9 function _msgSender() internal view virtual returns (address payable) {

10

EthereumMax | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 558

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "DEAD" is internal.
Other possible visibility settings are public and private.

Source File
- EMAX.sol

Locations

557

558 address DEAD = 0x000000000000000000000000000000000000dEaD;

559

560 uint8 private constant _decimals = 18;

561

562

EthereumMax | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 588

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- EMAX.sol

Locations

587

588 bool inSwap;

589

590 bool public tradingOpen = false;

591 bool public zeroBuyTax = true;

592

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 892

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

891 address[] memory path = new address[](2);

892 path[0] = address(this);

893 path[1] = RouterV2.WETH();

894

895 _approve(address(this), address(RouterV2), tokenAmount);

896

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 893

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

892 path[0] = address(this);

893 path[1] = RouterV2.WETH();

894

895 _approve(address(this), address(RouterV2), tokenAmount);

896 uint256[] memory amount = RouterV2.getAmountsOut(tokenAmount, path);

897

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 897

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

896 uint256[] memory amount = RouterV2.getAmountsOut(tokenAmount, path);

897 uint256 amountMin = amount[1].sub(amount[1].div(50));

898

899 // make the swap

900 RouterV2.swapExactTokensForETHSupportingFeeOnTransferTokens(

901

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 897

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

896 uint256[] memory amount = RouterV2.getAmountsOut(tokenAmount, path);

897 uint256 amountMin = amount[1].sub(amount[1].div(50));

898

899 // make the swap

900 RouterV2.swapExactTokensForETHSupportingFeeOnTransferTokens(

901

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1076

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

1075 for (uint256 i; i < addresses.length; ++i) {

1076 _isExcludedFromFee[addresses[i]] = true;

1077 }

1078 emit ExcludeMultiple(addresses, true);

1079 }

1080

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1100

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

1099 for (uint256 i; i < addresses.length; ++i) {

1100 require(!_isTrusted[addresses[i]] || _override, "account is already trusted use

overide");

1101 _isSniper[addresses[i]] = status;

1102 }

1103 emit Manage_Snipers(addresses, status);

1104

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1101

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

1100 require(!_isTrusted[addresses[i]] || _override, "account is already trusted use

overide");

1101 _isSniper[addresses[i]] = status;

1102 }

1103 emit Manage_Snipers(addresses, status);

1104 }

1105

EthereumMax | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1108

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- EMAX.sol

Locations

1107 for (uint256 i; i < addresses.length; ++i) {

1108 _isTrusted[addresses[i]] = status;

1109 }

1110 emit Manage_trusted(addresses, status);

1111 }

1112

EthereumMax | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 807

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- EMAX.sol

Locations

806 //antibot - first X blocks

807 if (launchedAt > 0 && (launchedAt + deadBlocks) > block.number) {

808 _isSniper[to] = true;

809 }

810

811

EthereumMax | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 813

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- EMAX.sol

Locations

812 if (

813 launchedAt > 0 && from != owner() && block.number <= (launchedAt + deadBlocks) &&

antiBotmode

814) {

815 currenttotalFee = 900; //90%

816 }

817

EthereumMax | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1034

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- EMAX.sol

Locations

1033 if (tradingOpen && launchedAt == 0) {

1034 launchedAt = block.number;

1035 deadBlocks = _deadBlocks;

1036 }

1037 emit OpenTrading(launchedAt, tradingOpen);

1038

EthereumMax | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

EthereumMax | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

