
Rabbit 23

Smart Contract
Audit Report

19 Jan 2023

Rabbit 23 | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Rabbit 23 | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Rabbit 23 Rabbit 23 BSC

| Addresses

Contract address 0xfbfb86682EE8CBA2bd40359b8C687940B6DfFc53

Contract deployer address 0x13ee684FcBd200Aba1CE08a3a04dE01fb106f8F9

| Project Website

https://rabbit23.com/

| Codebase

https://bscscan.com/address/0xfbfb86682EE8CBA2bd40359b8C687940B6DfFc53#contracts

https://rabbit23.com/
https://bscscan.com/address/0xfbfb86682EE8CBA2bd40359b8C687940B6DfFc53#contracts

Rabbit 23 | Security Analysis

SUMMARY

Rabbit 23 is the last rabbit meme coin to be produced for the 2023 Chinese new year. Buy&Sel tax 4%
(1%Liquidity, 1% Development and 2% Marketing). No Unlock Token and Renounced Ownership.

| Contract Summary

Documentation Quality

This project has a standard of documentation.

Technical description provided.

Code Quality

The quality of the code in this project is up to standard.

The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

Issues Found

SWC-101 | Arithmetic operation issues discovered on lines 35, 47, 57, 58, 69, 81, 419, 420, 421, and 422.
SWC-103 | A floating pragma is set on line 6, the current pragma Solidity directive is ""^0.8.4"".
SWC-108 | State variable visibility is not set on lines 395 and 427. It is best practice to set the visibility of
state variables explicitly to public or private.
SWC-110 | Out of bounds array access issues discovered on lines 725 and 726.

Rabbit 23 | Security Analysis

CONCLUSION

We have audited the Rabbit 23 project which has released on January 2023 to discover issues and identify
potential security vulnerabilities in Rabbit 23 Project. This process is used to find technical issues and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. The low-level issues found are some arithmetic operation
issues, a floating pragma is set, a state variable visibility is not set, and out of bounds array access which the
index access expression can cause an exception in case of use of an invalid array index value.

Rabbit 23 | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Rabbit 23 | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Rabbit 23 | Security Analysis

SMART CONTRACT ANALYSIS

Started Wed Jan 18 2023 23:17:57 GMT+0000 (Coordinated Universal Time)

Finished Tue Jan 19 2023 03:21:47 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Rabbit.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 35

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

34 function add(uint256 a, uint256 b) internal pure returns (uint256) {

35 uint256 c = a + b;

36 require(c >= a, "SafeMath: addition overflow");

37

38 return c;

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 47

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

46 require(b <= a, errorMessage);

47 uint256 c = a - b;

48

49 return c;

50 }

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 57

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

56

57 uint256 c = a * b;

58 require(c / a == b, "SafeMath: multiplication overflow");

59

60 return c;

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 58

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

57 uint256 c = a * b;

58 require(c / a == b, "SafeMath: multiplication overflow");

59

60 return c;

61 }

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 69

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

68 require(b > 0, errorMessage);

69 uint256 c = a / b;

70 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

71

72 return c;

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 81

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

80 require(b != 0, errorMessage);

81 return a % b;

82 }

83 }

84

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 419

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

418

419 uint256 private _totalSupply = 1000000000000 * 10**_decimals;

420 uint256 public _maxTxAmount = 1000000000000 * 10**_decimals;

421 uint256 public _walletMax = 1000000000000 * 10**_decimals;

422 uint256 private minimumTokensBeforeSwap = 100 * 10**_decimals;

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 420

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

419 uint256 private _totalSupply = 1000000000000 * 10**_decimals;

420 uint256 public _maxTxAmount = 1000000000000 * 10**_decimals;

421 uint256 public _walletMax = 1000000000000 * 10**_decimals;

422 uint256 private minimumTokensBeforeSwap = 100 * 10**_decimals;

423

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 421

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

420 uint256 public _maxTxAmount = 1000000000000 * 10**_decimals;

421 uint256 public _walletMax = 1000000000000 * 10**_decimals;

422 uint256 private minimumTokensBeforeSwap = 100 * 10**_decimals;

423

424 IUniswapV2Router02 public uniswapV2Router;

Rabbit 23 | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 422

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Rabbit.sol

Locations

421 uint256 public _walletMax = 1000000000000 * 10**_decimals;

422 uint256 private minimumTokensBeforeSwap = 100 * 10**_decimals;

423

424 IUniswapV2Router02 public uniswapV2Router;

425 address public uniswapPair;

Rabbit 23 | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.4"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Rabbit.sol

Locations

5 // SPDX-License-Identifier: Unlicensed

6 pragma solidity ^0.8.4;

7

8 abstract contract Context {

9

Rabbit 23 | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 395

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_balances" is internal.
Other possible visibility settings are public and private.

Source File
- Rabbit.sol

Locations

394

395 mapping (address => uint256) _balances;

396 mapping (address => mapping (address => uint256)) private _allowances;

397

398 mapping (address => bool) public isExcludedFromFee;

Rabbit 23 | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 427

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- Rabbit.sol

Locations

426

427 bool inSwapAndLiquify;

428 bool public swapAndLiquifyEnabled = true;

429 bool public swapAndLiquifyByLimitOnly = false;

430 bool public checkWalletLimit = true;

Rabbit 23 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 725

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Rabbit.sol

Locations

724 address[] memory path = new address[](2);

725 path[0] = address(this);

726 path[1] = uniswapV2Router.WETH();

727

728 _approve(address(this), address(uniswapV2Router), tokenAmount);

Rabbit 23 | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 726

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Rabbit.sol

Locations

725 path[0] = address(this);

726 path[1] = uniswapV2Router.WETH();

727

728 _approve(address(this), address(uniswapV2Router), tokenAmount);

729

Rabbit 23 | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Rabbit 23 | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

