
LuckyBlock

Smart Contract
Audit Report

04 Dec 2021



LuckyBlock | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us



LuckyBlock | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

LuckyBlock LBlock Binance Smart Chain

| Addresses

Contract address 0x2cd96e8c3ff6b5e01169f6e3b61d28204e7810bb

Contract deployer address 0x01103B62a82071442Aa56F1Fb496b9C0c8844797

| Project Website

https://www.luckyblock.com/id 

| Codebase

https://bscscan.com/address/0x2cd96e8c3ff6b5e01169f6e3b61d28204e7810bb#code 

https://www.luckyblock.com/id
https://bscscan.com/address/0x2cd96e8c3ff6b5e01169f6e3b61d28204e7810bb#code


LuckyBlock | Security Analysis

SUMMARY

Lucky Block casino and sportsbook is reinventing the way people bet - with the $LBlock token being the fastest
growing cryptocurrency to reach a $1 billion market cap. Our casino and sportsbook, provides the best of both
worlds - an engaging and entertaining casino experience, combined with a sportsbook that provides fantastic
odds in a wide array of sporting events.

| Contract Summary

Documentation Quality

LuckyBlock provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by LuckyBlock with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 767, 768 and 790.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 197, 211, 226, 227, 240, 252, 267, 281, 295, 309, 325, 348, 371, 397, 715, 720, 725, 730, 735, 745,
765, 765, 1001, 1003, 1048, 1056, 1074, 1081, 1138, 1138, 1147, 1147, 1164, 1164, 1180, 1180, 1196,
1196, 1208 and 1003.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 8.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1002, 1003, 1003, 1210, 1211, 1214, 1216, 1252 and 1253.



LuckyBlock | Security Analysis

CONCLUSION

We have audited the LuckyBlock project released on December 2021 to discover issues and identify potential
security vulnerabilities in LuckyBlock Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the LuckyBlock smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. It is best practice to set the visibility of state variables explicitly. The
default visibility for "isTaxless" is internal. Other possible visibility settings are public and private.



LuckyBlock | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS



LuckyBlock | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS



LuckyBlock | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS



LuckyBlock | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Dec 03 2021 22:32:11 GMT+0000 (Coordinated Universal Time)

Finished Saturday Dec 04 2021 14:53:34 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File LuckyBlock.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged



SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 197

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

196   unchecked {

197   uint256 c = a + b;

198   if (c < a) return (false, 0);

199   return (true, c);

200   }

201   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 211

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

210   if (b > a) return (false, 0);

211   return (true, a - b);

212   }

213   }

214   

215   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 226

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

225   if (a == 0) return (true, 0);

226   uint256 c = a * b;

227   if (c / a != b) return (false, 0);

228   return (true, c);

229   }

230   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 227

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

226   uint256 c = a * b;

227   if (c / a != b) return (false, 0);

228   return (true, c);

229   }

230   }

231   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 240

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

239   if (b == 0) return (false, 0);

240   return (true, a / b);

241   }

242   }

243   

244   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 252

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

251   if (b == 0) return (false, 0);

252   return (true, a % b);

253   }

254   }

255   

256   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 267

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

266   function add(uint256 a, uint256 b) internal pure returns (uint256) {

267   return a + b;

268   }

269   

270   /**

271   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 281

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

280   function sub(uint256 a, uint256 b) internal pure returns (uint256) {

281   return a - b;

282   }

283   

284   /**

285   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 295

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

294   function mul(uint256 a, uint256 b) internal pure returns (uint256) {

295   return a * b;

296   }

297   

298   /**

299   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 309

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

308   function div(uint256 a, uint256 b) internal pure returns (uint256) {

309   return a / b;

310   }

311   

312   /**

313   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

324   function mod(uint256 a, uint256 b) internal pure returns (uint256) {

325   return a % b;

326   }

327   

328   /**

329   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 348

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

347   require(b <= a, errorMessage);

348   return a - b;

349   }

350   }

351   

352   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 371

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

370   require(b > 0, errorMessage);

371   return a / b;

372   }

373   }

374   

375   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 397

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

396   require(b > 0, errorMessage);

397   return a % b;

398   }

399   }

400   }

401   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 715

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

714   function toUint128(uint256 value) internal pure returns (uint128) {

715   require(value < 2**128, "SafeCast: value doesn't fit in 128 bits");

716   return uint128(value);

717   }

718   

719   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 720

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

719   function toUint64(uint256 value) internal pure returns (uint64) {

720   require(value < 2**64, "SafeCast: value doesn't fit in 64 bits");

721   return uint64(value);

722   }

723   

724   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 725

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

724   function toUint32(uint256 value) internal pure returns (uint32) {

725   require(value < 2**32, "SafeCast: value doesn't fit in 32 bits");

726   return uint32(value);

727   }

728   

729   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 730

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

729   function toUint16(uint256 value) internal pure returns (uint16) {

730   require(value < 2**16, "SafeCast: value doesn't fit in 16 bits");

731   return uint16(value);

732   }

733   

734   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 735

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

734   function toUint8(uint256 value) internal pure returns (uint8) {

735   require(value < 2**8, "SafeCast: value doesn't fit in 8 bits");

736   return uint8(value);

737   }

738   

739   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 745

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

744   function toInt256(uint256 value) internal pure returns (int256) {

745   require(value < 2**255, "SafeCast: value doesn't fit in an int256");

746   return int256(value);

747   }

748   }

749   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 765

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

764   uint256 internal _tokenTotal = 100_000_000_000e9;

765   uint256 internal _reflectionTotal = (MAX - (MAX % _tokenTotal));

766   

767   mapping(address => bool) blacklist;

768   mapping(address => bool) isTaxless;

769   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 765

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

764   uint256 internal _tokenTotal = 100_000_000_000e9;

765   uint256 internal _reflectionTotal = (MAX - (MAX % _tokenTotal));

766   

767   mapping(address => bool) blacklist;

768   mapping(address => bool) isTaxless;

769   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1001

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1000   require(_isExcluded[account], "TOKEN: Account is already included");

1001   for (uint256 i = 0; i < _excluded.length; i++) {

1002   if (_excluded[i] == account) {

1003   _excluded[i] = _excluded[_excluded.length - 1];

1004   _tokenBalance[account] = 0;

1005   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1003

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1002   if (_excluded[i] == account) {

1003   _excluded[i] = _excluded[_excluded.length - 1];

1004   _tokenBalance[account] = 0;

1005   _isExcluded[account] = false;

1006   _excluded.pop();

1007   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1048

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1047   !isTaxless[recipient] &&

1048   listedAt + 3 minutes >= block.timestamp

1049   ) {

1050   // don't allow to buy more than 0.01% of total supply for 3 minutes after launch

1051   require(

1052   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1056

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1055   );

1056   if (listedAt + 180 seconds >= block.timestamp)

1057   // don't allow sell for 180 seconds afer launch

1058   require(

1059   recipient != pancakeSwapV2Pair,

1060   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1074

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1073   if (

1074   lastSellCycleStart[sender] + sellCooldownTime < block.timestamp

1075   ) {

1076   lastSellCycleStart[sender] = block.timestamp;

1077   transferAmounts[sender] = 0;

1078   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1081

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1080   if (transferAmounts[sender] >= sellCooldownAmount) {

1081   sellCooldown[sender] = block.timestamp + sellCooldownTime;

1082   }

1083   }

1084   

1085   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1137   if(taxFee != 0 && to == distributionWallet){

1138   uint256 _taxFee = amount.mul(taxFee).div(10**(feeDecimal + 2));

1139   transferAmount = transferAmount.sub(_taxFee);

1140   _reflectionTotal = _reflectionTotal.sub(_taxFee.mul(rate));

1141   taxFeeTotal = taxFeeTotal.add(_taxFee);

1142   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1138

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1137   if(taxFee != 0 && to == distributionWallet){

1138   uint256 _taxFee = amount.mul(taxFee).div(10**(feeDecimal + 2));

1139   transferAmount = transferAmount.sub(_taxFee);

1140   _reflectionTotal = _reflectionTotal.sub(_taxFee.mul(rate));

1141   taxFeeTotal = taxFeeTotal.add(_taxFee);

1142   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1146   uint256 _liquidityFee = amount.mul(liquidityFee).div(

1147   10**(feeDecimal + 2)

1148   );

1149   transferAmount = transferAmount.sub(_liquidityFee);

1150   _reflectionBalance[address(this)] = _reflectionBalance[

1151   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1146   uint256 _liquidityFee = amount.mul(liquidityFee).div(

1147   10**(feeDecimal + 2)

1148   );

1149   transferAmount = transferAmount.sub(_liquidityFee);

1150   _reflectionBalance[address(this)] = _reflectionBalance[

1151   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1164

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1163   if (lotteryPoolFee != 0 && to == pancakeSwapV2Pair) {

1164   uint256 _lotteryPoolFee = amount.mul(lotteryPoolFee).div(10**(feeDecimal + 2));

1165   transferAmount = transferAmount.sub(_lotteryPoolFee);

1166   _reflectionBalance[lotteryPoolWallet] = _reflectionBalance[lotteryPoolWallet].add(

1167   _lotteryPoolFee.mul(rate)

1168   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1164

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1163   if (lotteryPoolFee != 0 && to == pancakeSwapV2Pair) {

1164   uint256 _lotteryPoolFee = amount.mul(lotteryPoolFee).div(10**(feeDecimal + 2));

1165   transferAmount = transferAmount.sub(_lotteryPoolFee);

1166   _reflectionBalance[lotteryPoolWallet] = _reflectionBalance[lotteryPoolWallet].add(

1167   _lotteryPoolFee.mul(rate)

1168   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1179   if (nftRoyalPoolFee != 0 && to == pancakeSwapV2Pair) {

1180   uint256 _nftRoyalPoolFee = amount.mul(nftRoyalPoolFee).div(10**(feeDecimal + 2));

1181   transferAmount = transferAmount.sub(_nftRoyalPoolFee);

1182   _reflectionBalance[nftRoyalPoolWallet] = 

_reflectionBalance[nftRoyalPoolWallet].add(

1183   _nftRoyalPoolFee.mul(rate)

1184   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1180

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1179   if (nftRoyalPoolFee != 0 && to == pancakeSwapV2Pair) {

1180   uint256 _nftRoyalPoolFee = amount.mul(nftRoyalPoolFee).div(10**(feeDecimal + 2));

1181   transferAmount = transferAmount.sub(_nftRoyalPoolFee);

1182   _reflectionBalance[nftRoyalPoolWallet] = 

_reflectionBalance[nftRoyalPoolWallet].add(

1183   _nftRoyalPoolFee.mul(rate)

1184   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1195   if (burnFee != 0 && to == pancakeSwapV2Pair) {

1196   uint256 _burnFee = amount.mul(burnFee).div(10**(feeDecimal + 2));

1197   transferAmount = transferAmount.sub(_burnFee);

1198   _tokenBalance[deadWallet] = _tokenBalance[deadWallet].add(_burnFee);

1199   emit Transfer(account, deadWallet, _burnFee);

1200   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1196

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1195   if (burnFee != 0 && to == pancakeSwapV2Pair) {

1196   uint256 _burnFee = amount.mul(burnFee).div(10**(feeDecimal + 2));

1197   transferAmount = transferAmount.sub(_burnFee);

1198   _tokenBalance[deadWallet] = _tokenBalance[deadWallet].add(_burnFee);

1199   emit Transfer(account, deadWallet, _burnFee);

1200   



LuckyBlock | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1208

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1207   uint256 tokenSupply = _tokenTotal;

1208   for (uint256 i = 0; i < _excluded.length; i++) {

1209   if (

1210   _reflectionBalance[_excluded[i]] > reflectionSupply ||

1211   _tokenBalance[_excluded[i]] > tokenSupply

1212   



LuckyBlock | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1003

low SEVERITY
This plugin produces issues to support false positive discovery within mythril. 

Source File
- LuckyBlock.sol 

Locations

1002   if (_excluded[i] == account) {

1003   _excluded[i] = _excluded[_excluded.length - 1];

1004   _tokenBalance[account] = 0;

1005   _isExcluded[account] = false;

1006   _excluded.pop();

1007   



LuckyBlock | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 8

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code. 

Source File
- LuckyBlock.sol 

Locations

7   

8   pragma solidity ^0.8.0;

9   

10   /**

11   * @dev Interface of the ERC20 standard as defined in the EIP.

12   



LuckyBlock | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 767

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "blacklist" is internal.
Other possible visibility settings are public and private. 

Source File
- LuckyBlock.sol 

Locations

766   

767   mapping(address => bool) blacklist;

768   mapping(address => bool) isTaxless;

769   mapping(address => bool) internal _isExcluded;

770   address[] internal _excluded;

771   



LuckyBlock | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 768

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "isTaxless" is internal.
Other possible visibility settings are public and private. 

Source File
- LuckyBlock.sol 

Locations

767   mapping(address => bool) blacklist;

768   mapping(address => bool) isTaxless;

769   mapping(address => bool) internal _isExcluded;

770   address[] internal _excluded;

771   

772   



LuckyBlock | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 790

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "deadWallet" is
internal. Other possible visibility settings are public and private. 

Source File
- LuckyBlock.sol 

Locations

789   address public lotteryPoolWallet=0x1C68DFB90D6F2acb05b7b34dF191e9C6B38E9Cb1;

790   address deadWallet = 0x000000000000000000000000000000000000dEaD;

791   

792   address public admin;

793   

794   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1002

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1001   for (uint256 i = 0; i < _excluded.length; i++) {

1002   if (_excluded[i] == account) {

1003   _excluded[i] = _excluded[_excluded.length - 1];

1004   _tokenBalance[account] = 0;

1005   _isExcluded[account] = false;

1006   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1003

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1002   if (_excluded[i] == account) {

1003   _excluded[i] = _excluded[_excluded.length - 1];

1004   _tokenBalance[account] = 0;

1005   _isExcluded[account] = false;

1006   _excluded.pop();

1007   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1003

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1002   if (_excluded[i] == account) {

1003   _excluded[i] = _excluded[_excluded.length - 1];

1004   _tokenBalance[account] = 0;

1005   _isExcluded[account] = false;

1006   _excluded.pop();

1007   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1210

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1209   if (

1210   _reflectionBalance[_excluded[i]] > reflectionSupply ||

1211   _tokenBalance[_excluded[i]] > tokenSupply

1212   ) return _reflectionTotal.div(_tokenTotal);

1213   reflectionSupply = reflectionSupply.sub(

1214   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1211

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1210   _reflectionBalance[_excluded[i]] > reflectionSupply ||

1211   _tokenBalance[_excluded[i]] > tokenSupply

1212   ) return _reflectionTotal.div(_tokenTotal);

1213   reflectionSupply = reflectionSupply.sub(

1214   _reflectionBalance[_excluded[i]]

1215   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1214

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1213   reflectionSupply = reflectionSupply.sub(

1214   _reflectionBalance[_excluded[i]]

1215   );

1216   tokenSupply = tokenSupply.sub(_tokenBalance[_excluded[i]]);

1217   }

1218   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1216

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1215   );

1216   tokenSupply = tokenSupply.sub(_tokenBalance[_excluded[i]]);

1217   }

1218   if (reflectionSupply < _reflectionTotal.div(_tokenTotal))

1219   return _reflectionTotal.div(_tokenTotal);

1220   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1252

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1251   address[] memory path = new address[](2);

1252   path[0] = address(this);

1253   path[1] = pancakeswapV2Router.WETH();

1254   

1255   _approve(address(this), address(pancakeswapV2Router), tokenAmount);

1256   



LuckyBlock | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1253

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value. 

Source File
- LuckyBlock.sol 

Locations

1252   path[0] = address(this);

1253   path[1] = pancakeswapV2Router.WETH();

1254   

1255   _approve(address(this), address(pancakeswapV2Router), tokenAmount);

1256   

1257   



LuckyBlock | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



LuckyBlock | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.


