
MoonStar

Smart Contract
Audit Report

04 Apr 2021

MoonStar | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MoonStar | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MoonStar MOONSTAR Binance Smart Chain

| Addresses

Contract address 0xce5814efff15d53efd8025b9f2006d4d7d640b9b

Contract deployer address 0x418c3d5CD2Ba7E51D32D987FF0810f8fdBc1f992

| Project Website

https://moonstartoken.com/

| Codebase

https://bscscan.com/address/0xce5814efff15d53efd8025b9f2006d4d7d640b9b#code

https://moonstartoken.com/
https://bscscan.com/address/0xce5814efff15d53efd8025b9f2006d4d7d640b9b#code

MoonStar | Security Analysis

SUMMARY

MoonStar was first conceptualized by a now-anonymous initial developer who forged into the crypto-verse with
a new approach to token farming and deflationary currency. The coin began as a supply vs. demand
experiment and has blossomed into a full utility, inertly cultivating burn token. The MoonStar Token is the
premier static-rewards token for holders. MoonStar capitalizes on an advanced static farming algorithm
incentivizing holders to stake prominent positions and hold. Every time a token holder closes a portion of their
work, 5% of their close will be broken up among all other wallets, bringing the user more shares for free. With
an initial burn of 4,000,000,000,000 (trillion) tokens, 0.4% of the initial supply pool has already been
permanently destroyed. The token burn is a strategic anti-inflationary measure that guarantees the value of the
coin will not become drowned out by its supply.

| Contract Summary

Documentation Quality

MoonStar provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by MoonStar with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 739.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 127, 159, 182, 183, 218, 254, 481, 722, 722, 722, 722, 723, 723, 742, 742, 742, 742, 743, 743, 743,
743, 874, 876, 913, 959, 978, 984 and 876.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 28.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 875, 876, 876, 960, 960, 961, 962, 1087 and 1088.

MoonStar | Security Analysis

CONCLUSION

We have audited the MoonStar project released on April 2021 to discover issues and identify potential security
vulnerabilities in MoonStar Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the MoonStar smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

MoonStar | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

MoonStar | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

MoonStar | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

MoonStar | Security Analysis

SMART CONTRACT ANALYSIS

Started Saturday Apr 03 2021 10:06:20 GMT+0000 (Coordinated Universal Time)

Finished Sunday Apr 04 2021 14:18:58 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MoonStar.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 127

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

126 function add(uint256 a, uint256 b) internal pure returns (uint256) {

127 uint256 c = a + b;

128 require(c >= a, "SafeMath: addition overflow");

129

130 return c;

131

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

158 require(b <= a, errorMessage);

159 uint256 c = a - b;

160

161 return c;

162 }

163

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 182

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

181

182 uint256 c = a * b;

183 require(c / a == b, "SafeMath: multiplication overflow");

184

185 return c;

186

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 183

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

182 uint256 c = a * b;

183 require(c / a == b, "SafeMath: multiplication overflow");

184

185 return c;

186 }

187

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 218

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

217 require(b > 0, errorMessage);

218 uint256 c = a / b;

219 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

220

221 return c;

222

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 254

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

253 require(b != 0, errorMessage);

254 return a % b;

255 }

256 }

257

258

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 481

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

480 _owner = address(0);

481 _lockTime = now + time;

482 emit OwnershipTransferred(_owner, address(0));

483 }

484

485

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 722

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

721 uint256 private constant MAX = ~uint256(0);

722 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

723 uint256 private _rTotal = (MAX - (MAX % _tTotal));

724 uint256 private _tFeeTotal;

725

726

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 722

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

721 uint256 private constant MAX = ~uint256(0);

722 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

723 uint256 private _rTotal = (MAX - (MAX % _tTotal));

724 uint256 private _tFeeTotal;

725

726

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 722

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

721 uint256 private constant MAX = ~uint256(0);

722 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

723 uint256 private _rTotal = (MAX - (MAX % _tTotal));

724 uint256 private _tFeeTotal;

725

726

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 722

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

721 uint256 private constant MAX = ~uint256(0);

722 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

723 uint256 private _rTotal = (MAX - (MAX % _tTotal));

724 uint256 private _tFeeTotal;

725

726

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 723

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

722 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

723 uint256 private _rTotal = (MAX - (MAX % _tTotal));

724 uint256 private _tFeeTotal;

725

726 string private _name = "MoonStar";

727

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 723

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

722 uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

723 uint256 private _rTotal = (MAX - (MAX % _tTotal));

724 uint256 private _tFeeTotal;

725

726 string private _name = "MoonStar";

727

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 742

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

741

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 742

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

741

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 742

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

741

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 742

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

741

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746 event SwapAndLiquifyEnabledUpdated(bool enabled);

747

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746 event SwapAndLiquifyEnabledUpdated(bool enabled);

747

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746 event SwapAndLiquifyEnabledUpdated(bool enabled);

747

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 743

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743 uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

744

745 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

746 event SwapAndLiquifyEnabledUpdated(bool enabled);

747

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 874

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

873 require(_isExcluded[account], "Account is already excluded");

874 for (uint256 i = 0; i < _excluded.length; i++) {

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 876

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 913

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

912 _maxTxAmount = _tTotal.mul(maxTxPercent).div(

913 10**2

914);

915 }

916

917

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 959

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

958 uint256 tSupply = _tTotal;

959 for (uint256 i = 0; i < _excluded.length; i++) {

960 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

961 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

962 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

963

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 978

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

977 return _amount.mul(_taxFee).div(

978 10**2

979);

980 }

981

982

MoonStar | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 984

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

983 return _amount.mul(_liquidityFee).div(

984 10**2

985);

986 }

987

988

MoonStar | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 876

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- MoonStar.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

MoonStar | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 28

low SEVERITY
The current pragma Solidity directive is ""^0.6.12"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MoonStar.sol

Locations

27

28 pragma solidity ^0.6.12;

29 // SPDX-License-Identifier: Unlicensed

30 interface IERC20 {

31

32

MoonStar | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 739

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- MoonStar.sol

Locations

738

739 bool inSwapAndLiquify;

740 bool public swapAndLiquifyEnabled = true;

741

742 uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

743

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 875

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

874 for (uint256 i = 0; i < _excluded.length; i++) {

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 876

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 876

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

875 if (_excluded[i] == account) {

876 _excluded[i] = _excluded[_excluded.length - 1];

877 _tOwned[account] = 0;

878 _isExcluded[account] = false;

879 _excluded.pop();

880

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 960

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

959 for (uint256 i = 0; i < _excluded.length; i++) {

960 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

961 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

962 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

963 }

964

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 960

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

959 for (uint256 i = 0; i < _excluded.length; i++) {

960 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

961 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

962 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

963 }

964

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 961

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

960 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

961 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

962 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

963 }

964 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

965

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 962

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

961 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

962 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

963 }

964 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

965 return (rSupply, tSupply);

966

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1087

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

1086 address[] memory path = new address[](2);

1087 path[0] = address(this);

1088 path[1] = uniswapV2Router.WETH();

1089

1090 _approve(address(this), address(uniswapV2Router), tokenAmount);

1091

MoonStar | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1088

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- MoonStar.sol

Locations

1087 path[0] = address(this);

1088 path[1] = uniswapV2Router.WETH();

1089

1090 _approve(address(this), address(uniswapV2Router), tokenAmount);

1091

1092

MoonStar | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MoonStar | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

