
Recharge

Smart Contract
Audit Report

14 Jul 2021

Recharge | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Recharge | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Recharge RCG Binance Smart Chain

| Addresses

Contract address 0x2d94172436d869c1e3c094bead272508fab0d9e3

Contract deployer address 0x3c2465d88C6546eac6F9aa6f79081Ad874CA2E8b

| Project Website

https://www.therecharge.io/

| Codebase

https://bscscan.com/address/0x2d94172436d869c1e3c094bead272508fab0d9e3#code

https://www.therecharge.io/
https://bscscan.com/address/0x2d94172436d869c1e3c094bead272508fab0d9e3#code

Recharge | Security Analysis

SUMMARY

The Recharge is A decentralized incentive solution that connects electric-charging platforms. The Recharge
aims to provide a long-term sustainable decentralized ecosystem that can help maximize participating users’
incentives.

| Contract Summary

Documentation Quality

Recharge provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Recharge with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 490.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 293, 311, 332, 359, 360, 379, 380, 402, 403, 521, 522, 523, 523, 524, 524, 533, 535, 536, 537, 559,
562, 564, 565, 567, 579, 587, 595, 607, 608, 617 and 522.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 16, 93, 117
and 144.

Recharge | Security Analysis

CONCLUSION

We have audited the Recharge project released on July 2021 to discover issues and identify potential security
vulnerabilities in Recharge Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Recharge smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues are arithmetic operation
issues, a floating pragma is set, and a state variable visibility is not set. The current pragma Solidity directive is
""^0.8.0"". Specifying a fixed compiler version is recommended to ensure that the bytecode produced does not
vary between builds. This is especially important if you rely on bytecode-level verification of the code. It is best
practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is internal. Other
possible visibility settings are public and private.

Recharge | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Recharge | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Recharge | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Recharge | Security Analysis

SMART CONTRACT ANALYSIS

Started Tuesday Jul 13 2021 09:43:58 GMT+0000 (Coordinated Universal Time)

Finished Wednesday Jul 14 2021 15:37:16 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File RCG.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 293

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

292 require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");

293 _approve(sender, _msgSender(), currentAllowance - amount);

294

295 return true;

296 }

297

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 311

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

310 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

311 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

312 return true;

313 }

314

315

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 332

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

331 require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below

zero");

332 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

333

334 return true;

335 }

336

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 359

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

358 require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");

359 _balances[sender] = senderBalance - amount;

360 _balances[recipient] += amount;

361

362 emit Transfer(sender, recipient, amount);

363

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 360

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

359 _balances[sender] = senderBalance - amount;

360 _balances[recipient] += amount;

361

362 emit Transfer(sender, recipient, amount);

363 }

364

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 379

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

378

379 _totalSupply += amount;

380 _balances[account] += amount;

381 emit Transfer(address(0), account, amount);

382 }

383

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 380

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

379 _totalSupply += amount;

380 _balances[account] += amount;

381 emit Transfer(address(0), account, amount);

382 }

383

384

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 402

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

401 require(accountBalance >= amount, "ERC20: burn amount exceeds balance");

402 _balances[account] = accountBalance - amount;

403 _totalSupply -= amount;

404

405 emit Transfer(account, address(0), amount);

406

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

402 _balances[account] = accountBalance - amount;

403 _totalSupply -= amount;

404

405 emit Transfer(account, address(0), amount);

406 }

407

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 521

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

520 if(basePercent==0) return 0;

521 uint256 c = value+basePercent;

522 uint256 d = c-1;

523 uint256 roundValue = d/basePercent*basePercent;

524 uint256 cutValue = roundValue*basePercent/10000;

525

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 522

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

521 uint256 c = value+basePercent;

522 uint256 d = c-1;

523 uint256 roundValue = d/basePercent*basePercent;

524 uint256 cutValue = roundValue*basePercent/10000;

525 return cutValue;

526

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 523

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

522 uint256 d = c-1;

523 uint256 roundValue = d/basePercent*basePercent;

524 uint256 cutValue = roundValue*basePercent/10000;

525 return cutValue;

526 }

527

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 523

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

522 uint256 d = c-1;

523 uint256 roundValue = d/basePercent*basePercent;

524 uint256 cutValue = roundValue*basePercent/10000;

525 return cutValue;

526 }

527

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 524

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

523 uint256 roundValue = d/basePercent*basePercent;

524 uint256 cutValue = roundValue*basePercent/10000;

525 return cutValue;

526 }

527

528

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 524

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

523 uint256 roundValue = d/basePercent*basePercent;

524 uint256 cutValue = roundValue*basePercent/10000;

525 return cutValue;

526 }

527

528

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 533

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

532 uint256 tokensToBurn = cut(value);

533 uint256 tokensToTransfer = value-tokensToBurn;

534

535 _balances[msg.sender] = _balances[msg.sender]-value;

536 _balances[to] = _balances[to]+tokensToTransfer;

537

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 535

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

534

535 _balances[msg.sender] = _balances[msg.sender]-value;

536 _balances[to] = _balances[to]+tokensToTransfer;

537 _balances[benefitial] = _balances[benefitial]+tokensToBurn;

538

539

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 536

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

535 _balances[msg.sender] = _balances[msg.sender]-value;

536 _balances[to] = _balances[to]+tokensToTransfer;

537 _balances[benefitial] = _balances[benefitial]+tokensToBurn;

538

539 emit Transfer(msg.sender, to, tokensToTransfer);

540

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 537

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

536 _balances[to] = _balances[to]+tokensToTransfer;

537 _balances[benefitial] = _balances[benefitial]+tokensToBurn;

538

539 emit Transfer(msg.sender, to, tokensToTransfer);

540 emit Transfer(msg.sender, benefitial, tokensToBurn);

541

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 559

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

558

559 _balances[from] = _balances[from]-value;

560

561 uint256 tokensToBurn = cut(value);

562 uint256 tokensToTransfer = value-tokensToBurn;

563

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 562

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

561 uint256 tokensToBurn = cut(value);

562 uint256 tokensToTransfer = value-tokensToBurn;

563

564 _balances[to] = _balances[to]+tokensToTransfer;

565 _balances[benefitial] = _balances[benefitial]+tokensToBurn;

566

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 564

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

563

564 _balances[to] = _balances[to]+tokensToTransfer;

565 _balances[benefitial] = _balances[benefitial]+tokensToBurn;

566

567 _allowed[from][msg.sender] = _allowed[from][msg.sender]-value;

568

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 565

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

564 _balances[to] = _balances[to]+tokensToTransfer;

565 _balances[benefitial] = _balances[benefitial]+tokensToBurn;

566

567 _allowed[from][msg.sender] = _allowed[from][msg.sender]-value;

568

569

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 567

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

566

567 _allowed[from][msg.sender] = _allowed[from][msg.sender]-value;

568

569 emit Approval(from, msg.sender, _allowed[from][msg.sender]);

570 emit Transfer(from, to, tokensToTransfer);

571

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 579

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

578 require(spender != address(0), "Address cannot be 0x0");

579 _allowed[msg.sender][spender] = (_allowed[msg.sender][spender]+addedValue);

580 emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);

581 return true;

582 }

583

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 587

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

586 require(spender != address(0), "Address cannot be 0x0");

587 _allowed[msg.sender][spender] = (_allowed[msg.sender][spender]-subtractedValue);

588 emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);

589 return true;

590 }

591

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 595

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

594 require(amount != 0, "Amount cannot be 0");

595 _balances[account] = _balances[account]+amount;

596 emit Transfer(address(0), account, amount);

597 }

598

599

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 607

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

606 require(amount != 0, "Amount Cannot be 0");

607 _balances[account] = _balances[account]-amount;

608 _totalSupply = _totalSupply-amount;

609 emit Transfer(account, address(0), amount);

610 }

611

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

607 _balances[account] = _balances[account]-amount;

608 _totalSupply = _totalSupply-amount;

609 emit Transfer(account, address(0), amount);

610 }

611

612

Recharge | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 617

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

616 function destroyFrom(address account, uint256 amount) external {

617 _allowed[account][msg.sender] = _allowed[account][msg.sender]-amount;

618 _destroy(account, amount);

619

620 emit Approval(account, msg.sender, _allowed[account][msg.sender]);

621

Recharge | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 522

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- RCG.sol

Locations

521 uint256 c = value+basePercent;

522 uint256 d = c-1;

523 uint256 roundValue = d/basePercent*basePercent;

524 uint256 cutValue = roundValue*basePercent/10000;

525 return cutValue;

526

Recharge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 16

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RCG.sol

Locations

15

16 pragma solidity ^0.8.0;

17

18 /**

19 * @dev Interface of the ERC20 standard as defined in the EIP.

20

Recharge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 93

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RCG.sol

Locations

92

93 pragma solidity ^0.8.0;

94

95 /*

96 * @dev Provides information about the current execution context, including the

97

Recharge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 117

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RCG.sol

Locations

116

117 pragma solidity ^0.8.0;

118

119

120 /**

121

Recharge | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 144

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- RCG.sol

Locations

143

144 pragma solidity ^0.8.0;

145

146

147

148

Recharge | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 490

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- RCG.sol

Locations

489 string public constant tokenSymbol = "RCG";

490 uint256 _totalSupply = 0;

491 uint256 public basePercent = 0;

492

493 constructor(address _owner, uint256 amount) ERC20(tokenName, tokenSymbol)

Owned(_owner) {

494

Recharge | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Recharge | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

