
Cheems Token

Smart Contract
Audit Report

16 Jan 2023

Cheems Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Cheems Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Cheems Token CHEEMS BSC

| Addresses

Contract address 0x299F8fBD8Eb6877dC6AeF79C9754fD7fF548D280

Contract deployer address 0xB0004dF5aBcf68D2b0Ae6F1445cda84c606Ae591

| Project Website

https://www.cheemstoken.com/

| Codebase

https://bscscan.com/address/0x299F8fBD8Eb6877dC6AeF79C9754fD7fF548D280#code

https://www.cheemstoken.com/
https://bscscan.com/address/0x299F8fBD8Eb6877dC6AeF79C9754fD7fF548D280#code

Cheems Token | Security Analysis

SUMMARY

The new dog king is in a building called Cheems. The first bsc dog coin for the people, by the people with 50%
of the total supply is burned. The cheems team was tired of toxic “fud binance” and wanted to make a fun
memecoin where everyone gets a fair shot. In-built staking rewards system for all its holders. The advantage is
an audit, 5% auto-reflection to holders per buy/sell, nft alpha of, cmc + cg fast track, no unlocked tokens, by ex-
sol dev, and community driven.

| Contract Summary

Documentation Quality

Cheems Token provides a document with a very good standard of solidity base code.

The technical description is provided clearly and structured and also don't have any high risk issue.

Code Quality

The Overall quality of the basecode is GOOD

Standart solidity basecode and rules are already followed with Cheems Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 411, 438, 471, 474, 490, 519, 521, 574, 697,
712, 729, 730, 744, 755, 766, 778, 789, 796, 821, 837, 855, 869, 1299, 1301, 1318, 1394, 1395, 1471,
1502, 1507, 1511, and 1395.
SWC-108 | State variable visibility is not set on lines 1251.It is best practice to set the visibility of state
variables explicitly. The default visibility for "protections" is internal. Other possible visibility settings are
public and private.
SWC-110 | Out of bounds array access on lines 1394, 1395, 1395, 1472, dan 1476.

Cheems Token | Security Analysis

CONCLUSION

We have audited the Cheems Token Coin which has released on January 2023 to discover issues and identify
potential security vulnerabilities in Cheems Token Project. This process is used to find bugs, technical issues,
and security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that were found stated variable
visibility is not set, and a floating pragma is set. We are commended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Cheems Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Cheems Token | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Cheems Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Sun Jan 15 2023 05:46:31 GMT+0000 (Coordinated Universal Time)

Finished Mon Jan 16 2023 06:40:31 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File cheems.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 411

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

410 require(account != address(0), "ERC20: mint to the zero address");

411 _beforeTokenTransfer(address(0), account, amount);

412 _totalSupply += amount;

413 |

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 438

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

437 require(accountBalance >= amount, "ERC20: burn amount exceeds balance");

438 unchecked {

439 _balances[account] = accountBalance - amount;

440 }

441 _totalSupply -= amount;

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 471

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

470 emit Approval(owner, spender, amount);

471 }

472 /**

473 * @dev Updates `owner` s allowance for `spender` based on spent `amount`.

474 *

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 474

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

473 /**

474 * @dev Updates `owner` s allowance for `spender` based on spent `amount`.

475 *

476 * Does not update the allowance amount in case of infinite allowance.

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 490

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

489 unchecked {

490 _approve(owner, spender, currentAllowance - amount);

491 }

492 }

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 519

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

518 * minting and burning.

519 *

520 * Calling conditions:

521 *

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 521

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

520 *

521 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens

522 * has been transferred to `to`.

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 574

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

573 *

574 * NOTE: Renouncing ownership will leave the contract without an owner,

575 * thereby removing any functionality that is only available to the owner.

576 */

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 697

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

696 /**

697 * @dev Returns the multiplication of two unsigned integers, reverting on

698 * overflow.

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 712

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

711 * @dev Returns the integer division of two unsigned integers, reverting on

712 * division by zero. The result is rounded towards zero.

713 *

714 * Counterpart to Solidity's `/` operator.

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

728 * Counterpart to Solidity's `%` operator. This function uses a `revert`

729 * opcode (which leaves remaining gas untouched) while Solidity uses an

730 * invalid opcode to revert (consuming all remaining gas).

731 *

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 730

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

729 * opcode (which leaves remaining gas untouched) while Solidity uses an

730 * invalid opcode to revert (consuming all remaining gas).

731 *

732 * Requirements:

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 744

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

743 * overflow (when the result is negative).

744 *

745 * CAUTION: This function is deprecated because it requires allocating memory for

the error

746 * CAUTION: This function is deprecated because it requires allocating memory for

the error

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 755

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

754 uint256 a,

755 uint256 b,

756 string memory errorMessage

757) internal pure returns (uint256) {

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 766

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

765 * @dev Returns the integer division of two unsigned integers, reverting with custom

message on

766 * division by zero. The result is rounded towards zero.

767 *

768 * Counterpart to Solidity's `/` operator. Note: this function uses a

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 778

low SEVERITY
Arithmetic operation "-" discovered

Source File
- cheems.sol

Locations

777 uint256 a,

778 uint256 b,

779 string memory errorMessage

780) internal pure returns (uint256) {

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 789

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

788 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer

modulo),

789 * reverting with custom message when dividing by zero.

790 *

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 796

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

795 * opcode (which leaves remaining gas untouched) while Solidity uses an

796 * invalid opcode to revert (consuming all remaining gas).

797 *

798 * Requirements:

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 821

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

820 * It is unsafe to assume that an address for which this function returns

821 * false is an externally-owned account (EOA) and not a contract.

822 *

823 * Among others, `isContract` will return false for the following

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 837

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

836 * Preventing calls from contracts is highly discouraged. It breaks composability,

breaks support for smart wallets

837 * like Gnosis Safe, and does not provide security since it can be circumvented by

calling from a contract

838 * constructor.

839 * ====

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 855

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

854 * of certain opcodes, possibly making contracts go over the 2300 gas limit

855 * imposed by `transfer`, making them unable to receive funds via

856 * imposed by `transfer`, making them unable to receive funds via

857 * `transfer`. {sendValue} removes this limitation.

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 869

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

868 (bool success,) = recipient.call{value: amount}("");

869 require(success, "Address: unable to send value, recipient may have reverted");

870 }

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1299

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1298 developmentWalletAddress = account;

1299 _isExcludedFromFee[account] = true;

1300 }

1301 function setMarketingAddress(address account) public onlyOwner() {

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1301

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1300 _isExcludedFromFee[account] = true;

1301 }

1302 function setMarketingAddress(address account) public onlyOwner() {

1303 _marketingWalletAddress = account;

1304 _isExcludedFromFee[account] = true;

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1318

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1317 }

1318 function reflectionFromToken(uint256 tAmount, bool deductTransferFee) public view

returns(uint256) {

1319 require(tAmount <= _tTotal, "Amount must be less than supply");

1320 if (!deductTransferFee) {

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1394

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1393 }

1394 function _getRValues(uint256 tAmount, TFees memory tfees, uint256 currentRate)

private pure returns (uint256, uint256, uint256) {

1395 uint256 rAmount = tAmount.mul(currentRate);

1396 uint256 rFee = tfees.tax.mul(currentRate);

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1394 function _getRValues(uint256 tAmount, TFees memory tfees, uint256 currentRate)

private pure returns (uint256, uint256, uint256) {

1395 uint256 rAmount = tAmount.mul(currentRate);

1396 uint256 rFee = tfees.tax.mul(currentRate);

1397 uint256 rDevelopment = tfees.development.mul(currentRate);

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1471

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1470 require(from != address(0), "ERC20: transfer from the zero address");

1471 require(to != address(0), "ERC20: transfer to the zero address");

1472 require(amount > 0, "Transfer amount must be greater than zero");

1473 |

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1502

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1501 _transferStandard(sender, recipient, amount);

1502 } else if (_isExcluded[sender] && _isExcluded[recipient]) {

1503 _transferBothExcluded(sender, recipient, amount);

1504 } else {

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1507

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1506 }

1507 if(!takeFee)

1508 restoreAllFee();

1509 }

Cheems Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1511

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1510 function _transferStandard(address sender, address recipient, uint256 tAmount)

private {

1511 (uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount,

uint256 tFee, uint256 tDevelopment, uint256 tMarketing) = _getValues(tAmount);

1512 _rOwned[sender] = _rOwned[sender].sub(rAmount);

1513 _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);

Cheems Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1395

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- cheems.sol

Locations

1394 function _getRValues(uint256 tAmount, TFees memory tfees, uint256 currentRate)

private pure returns (uint256, uint256, uint256) {

1395 uint256 rAmount = tAmount.mul(currentRate);

1396 uint256 rFee = tfees.tax.mul(currentRate);

1397 uint256 rDevelopment = tfees.development.mul(currentRate);

Cheems Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1251

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- cheems.sol

Locations

1250 address public immutable uniswapV2Pair;

1251 bool inSwapAndLiquify;

1252 bool public swapAndLiquifyEnabled = true;

1253 |

Cheems Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1394

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cheems.sol

Locations

1393 }

1394 function _getRValues(uint256 tAmount, TFees memory tfees, uint256 currentRate)

private pure returns (uint256, uint256, uint256) {

1395 uint256 rAmount = tAmount.mul(currentRate);

1396 uint256 rFee = tfees.tax.mul(currentRate);

Cheems Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1395

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cheems.sol

Locations

1394 function _getRValues(uint256 tAmount, TFees memory tfees, uint256 currentRate)

private pure returns (uint256, uint256, uint256) {

1395 uint256 rAmount = tAmount.mul(currentRate);

1396 uint256 rFee = tfees.tax.mul(currentRate);

1397 uint256 rDevelopment = tfees.development.mul(currentRate);

Cheems Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1395

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cheems.sol

Locations

1394 function _getRValues(uint256 tAmount, TFees memory tfees, uint256 currentRate)

private pure returns (uint256, uint256, uint256) {

1395 uint256 rAmount = tAmount.mul(currentRate);

1396 uint256 rFee = tfees.tax.mul(currentRate);

1397 uint256 rDevelopment = tfees.development.mul(currentRate);

Cheems Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1472

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cheems.sol

Locations

1471 require(to != address(0), "ERC20: transfer to the zero address");

1472 require(amount > 0, "Transfer amount must be greater than zero");

1473 uint256 contractTokenBalance = balanceOf(address(this));

1474 |

Cheems Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1476

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- cheems.sol

Locations

1475 uint256 contractTokenBalance = balanceOf(address(this));

1476 bool overMinTokenBalance = contractTokenBalance >= numTokensSellToAddToLiquidity;

1477 if (

1478 overMinTokenBalance &&

1479 |

Cheems Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Cheems Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

