
FINN Token

Smart Contract
Audit Report

27 Sep 2021

FINN Token | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

FINN Token | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

FINN Token FINN Moonriver

| Addresses

Contract address 0x9a92b5ebf1f6f6f7d93696fcd44e5cf75035a756

Contract deployer address 0xb87A39c5D3f5C53395Ba11b5058655A4A8AC82a5

| Project Website

https://www.huckleberry.finance/

| Codebase

https://moonriver.moonscan.io/address/0x9a92b5ebf1f6f6f7d93696fcd44e5cf75035a756#code

https://www.huckleberry.finance/
https://moonriver.moonscan.io/address/0x9a92b5ebf1f6f6f7d93696fcd44e5cf75035a756#code

FINN Token | Security Analysis

SUMMARY

FINN is Huckleberry's governance and reward token. It is a reflect token, meaning 1% of every FINN transaction
is automatically shared among all FINN holders, proportional to their holdings. Huckleberry is a community-
driven AMM cross-chain DEX built on Moonriver.

| Contract Summary

Documentation Quality

FINN Token provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by FINN Token with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 633 and 634.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 147, 159, 172, 173, 184, 194, 208, 225, 240, 241, 259, 276, 294, 314, 334, 657, 657, 762, 764, 873
and 764.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 12, 39, 45,
125, 342, 534 and 603.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 763, 764, 764, 874, 874, 875 and 876.

FINN Token | Security Analysis

CONCLUSION

We have audited the FINN Token project released on September 2021 to discover issues and identify potential
security vulnerabilities in FINN Token Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the FINN Token smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

FINN Token | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

FINN Token | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

FINN Token | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

FINN Token | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Sep 26 2021 23:46:16 GMT+0000 (Coordinated Universal Time)

Finished Monday Sep 27 2021 02:17:51 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File FINN.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

146 function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {

147 uint256 c = a + b;

148 if (c < a) return (false, 0);

149 return (true, c);

150 }

151

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

158 if (b > a) return (false, 0);

159 return (true, a - b);

160 }

161

162 /**

163

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 172

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

171 if (a == 0) return (true, 0);

172 uint256 c = a * b;

173 if (c / a != b) return (false, 0);

174 return (true, c);

175 }

176

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 173

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

172 uint256 c = a * b;

173 if (c / a != b) return (false, 0);

174 return (true, c);

175 }

176

177

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 184

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

183 if (b == 0) return (false, 0);

184 return (true, a / b);

185 }

186

187 /**

188

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 194

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

193 if (b == 0) return (false, 0);

194 return (true, a % b);

195 }

196

197 /**

198

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 208

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

207 function add(uint256 a, uint256 b) internal pure returns (uint256) {

208 uint256 c = a + b;

209 require(c >= a, "SafeMath: addition overflow");

210 return c;

211 }

212

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 225

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

224 require(b <= a, "SafeMath: subtraction overflow");

225 return a - b;

226 }

227

228 /**

229

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 240

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

239 if (a == 0) return 0;

240 uint256 c = a * b;

241 require(c / a == b, "SafeMath: multiplication overflow");

242 return c;

243 }

244

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 241

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

240 uint256 c = a * b;

241 require(c / a == b, "SafeMath: multiplication overflow");

242 return c;

243 }

244

245

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 259

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

258 require(b > 0, "SafeMath: division by zero");

259 return a / b;

260 }

261

262 /**

263

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 276

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

275 require(b > 0, "SafeMath: modulo by zero");

276 return a % b;

277 }

278

279 /**

280

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 294

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

293 require(b <= a, errorMessage);

294 return a - b;

295 }

296

297 /**

298

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 314

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

313 require(b > 0, errorMessage);

314 return a / b;

315 }

316

317 /**

318

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 334

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

333 require(b > 0, errorMessage);

334 return a % b;

335 }

336 }

337

338

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 657

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

656 _tTotal = initialSupply;

657 _rTotal = (MAX - (MAX % _tTotal));

658

659 _rOwned[_msgSender()] = _rTotal;

660 emit Transfer(address(0), _msgSender(), _tTotal);

661

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 657

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

656 _tTotal = initialSupply;

657 _rTotal = (MAX - (MAX % _tTotal));

658

659 _rOwned[_msgSender()] = _rTotal;

660 emit Transfer(address(0), _msgSender(), _tTotal);

661

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 762

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

761 require(_isExcluded[account], "Account is already excluded");

762 for (uint256 i = 0; i < _excluded.length; i++) {

763 if (_excluded[i] == account) {

764 _excluded[i] = _excluded[_excluded.length - 1];

765 _tOwned[account] = 0;

766

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 764

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

763 if (_excluded[i] == account) {

764 _excluded[i] = _excluded[_excluded.length - 1];

765 _tOwned[account] = 0;

766 _isExcluded[account] = false;

767 _excluded.pop();

768

FINN Token | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 873

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

872 uint256 tSupply = _tTotal;

873 for (uint256 i = 0; i < _excluded.length; i++) {

874 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

875 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

876 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

877

FINN Token | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 764

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- FINN.sol

Locations

763 if (_excluded[i] == account) {

764 _excluded[i] = _excluded[_excluded.length - 1];

765 _tOwned[account] = 0;

766 _isExcluded[account] = false;

767 _excluded.pop();

768

FINN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 12

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FINN.sol

Locations

11

12 pragma solidity >=0.6.0 <0.8.0;

13

14 /*

15 * @dev Provides information about the current execution context, including the

16

FINN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 39

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FINN.sol

Locations

38

39 pragma solidity >=0.6.0 <0.8.0;

40

41 // File: @openzeppelin/contracts/token/ERC20/IERC20.sol

42

43

FINN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 45

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FINN.sol

Locations

44

45 pragma solidity >=0.6.0 <0.8.0;

46

47 /**

48 * @dev Interface of the ERC20 standard as defined in the EIP.

49

FINN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 125

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FINN.sol

Locations

124

125 pragma solidity >=0.6.0 <0.8.0;

126

127 /**

128 * @dev Wrappers over Solidity's arithmetic operations with added overflow

129

FINN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 342

low SEVERITY
The current pragma Solidity directive is "">=0.6.2<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FINN.sol

Locations

341

342 pragma solidity >=0.6.2 <0.8.0;

343

344 /**

345 * @dev Collection of functions related to the address type

346

FINN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 534

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FINN.sol

Locations

533

534 pragma solidity >=0.6.0 <0.8.0;

535

536 /**

537 * @dev Contract module which provides a basic access control mechanism, where

538

FINN Token | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 603

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- FINN.sol

Locations

602

603 pragma solidity ^0.6.2;

604

605

606 /*

607

FINN Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 633

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_taxFee" is internal.
Other possible visibility settings are public and private.

Source File
- FINN.sol

Locations

632

633 uint256 _taxFee = 100; // 1%

634 uint256 _maxTaxFee = 1000; // 10%

635 uint256 private constant _GRANULARITY = 100;

636

637

FINN Token | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 634

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_maxTaxFee" is
internal. Other possible visibility settings are public and private.

Source File
- FINN.sol

Locations

633 uint256 _taxFee = 100; // 1%

634 uint256 _maxTaxFee = 1000; // 10%

635 uint256 private constant _GRANULARITY = 100;

636

637 uint256 private constant MAX = ~uint256(0);

638

FINN Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 763

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FINN.sol

Locations

762 for (uint256 i = 0; i < _excluded.length; i++) {

763 if (_excluded[i] == account) {

764 _excluded[i] = _excluded[_excluded.length - 1];

765 _tOwned[account] = 0;

766 _isExcluded[account] = false;

767

FINN Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 764

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FINN.sol

Locations

763 if (_excluded[i] == account) {

764 _excluded[i] = _excluded[_excluded.length - 1];

765 _tOwned[account] = 0;

766 _isExcluded[account] = false;

767 _excluded.pop();

768

FINN Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 764

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FINN.sol

Locations

763 if (_excluded[i] == account) {

764 _excluded[i] = _excluded[_excluded.length - 1];

765 _tOwned[account] = 0;

766 _isExcluded[account] = false;

767 _excluded.pop();

768

FINN Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 874

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FINN.sol

Locations

873 for (uint256 i = 0; i < _excluded.length; i++) {

874 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

875 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

876 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

877 }

878

FINN Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 874

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FINN.sol

Locations

873 for (uint256 i = 0; i < _excluded.length; i++) {

874 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

875 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

876 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

877 }

878

FINN Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 875

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FINN.sol

Locations

874 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

875 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

876 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

877 }

878 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

879

FINN Token | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 876

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- FINN.sol

Locations

875 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

876 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

877 }

878 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

879 return (rSupply, tSupply);

880

FINN Token | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

FINN Token | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

