l {@p ::
NG
0
CDHOP

ODOGE

Smart Contract
Audit Report

@ SYSFIXED 15 May 2021

£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

ODOGH Security Analysis

£ SYSFIXED

AUDITED DETAILS

| Audited Project

ODOGH Security Analysis

Project name

Token ticker

Blockchain

TDOGE

TDOGE

Binance Smart Chain

| Addresses

Contract address

0xe550a593d09fbc8dcd557b5c88ceab946a8b404a

Contract deployer address

0xAd3784cD071602d6¢c9¢2980d8e0933466C3F0ala

| Project Website

https://www.btcst.finance/

| Codebase

https://bscscan.com/address/0xe550a593d09fbc8dcd557b5¢c88ceab6946a8b404a#code

https://www.btcst.finance/
https://bscscan.com/address/0xe550a593d09fbc8dcd557b5c88cea6946a8b404a#code

@ SYSFIXED ODOGH Security Analysis

SUMMARY

Proof-of-work (“PoW”) cryptocurrencies are securing significant amounts of value. At the time of this writing,
Bitcoin's commonly referred to market capitalization alone is about $1 trillion US dollars. Many PoW
blockchains, however, have limited support for decentralized finance (“DeFi”). A gap exists between DeFi as a
set of developing financial protocols and PoW assets as the primary value stores for cryptocurrencies.
Wrapping can ferry POW cryptocurrencies into DeFi. Nonetheless, the trust models from “wrapped” frameworks
introduce an intermediary with a new attack surface. Trustworthy centralized custodians are rare and often
involve onerous restrictions. Non-custodial synthetic cryptocurrencies consequently surface as a potential
solution. These synthetic assets substitute PoW assets by maintaining price pegs with their non-synthetic
counterparts. In other words, the strength of the pegs determines the efficacy of synthetic help. Empirical
evidence from projects that include prominent algorithmic stablecoins has shown the peg weak for the current
generation of non-custodial artificial two cryptocurrencies. The reason for pegging failure appears to be these
synthetics’ lack of value support from outside their systems. Internal pegging mechanisms become irrelevant
when users lose confidence in the systems in their entirety. We propose the T protocol to solve this problem.
The T protocol synthesizes the process through which PoW cryptocurrencies are mined and introduces
external value support as part of its price-pegging mechanism. PoW cryptocurrencies synthesized through the
T protocol should demonstrate strong price pegs and form a reliable basis for DeFi products.

| Contract Summary

Documentation Quality
TDOGE provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by TDOGE with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

e SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 273, 353, 273 and 353.
SYRFREEQS | Pragma statements can be allowed to float when a contract is intended on lines 9, 87, 253
and 331.

@ SYSFIXED ODOGH Security Analysis

CONCLUSION

We have audited the TDOGE Project released on May 2021 to discover issues and identify potential security
vulnerabilities in TDOGE Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues in the TDOGE smart contract code do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues are some arithmetic operation issues,
and a floating pragma is set. The current pragma Solidity directive is "*0.6.0". Specifying a fixed compiler
version is recommended to ensure that the bytecode produced does not vary between builds. This is especially
important if you rely on bytecode-level verification of the code.

@ SYSFIXED ODOGH Security Analysis

AUDIT RESULT

Article Category Description Result
SWC-100 Functions and state variables visibility should be
Default Visibility SWC-108 set explicitly. Visibility levels should be specified PASS
consciously.
Integer Overflow SRk T If unchecked math is used, all math operations ISSUE
and Underflow should be safe from overflows and underflows. FOUND
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.

Check effect interaction pattern should be followed
Reentrancy SWC-107)) PASS
if the code performs recursive call.

Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation PASS

SWC-123 failing assert statement.

Deprecated Solidity

. SWC-111 Deprecated built-in functions should never be used. PASS
Functions

Delegate call to Delegatecalls should only be allowed to trusted
SWC-112

PASS
Untrusted Callee addresses.

£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

ODOGH Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

£ SYSFIXED

Typographical
Error

Override control
character

Unused variables

Unexpected Ether
balance

Hash Collisions
Variable

Hardcoded gas
amount

Unencrypted
Private Data

SWC-129

SWC-130

SWC-131
SWC-135

SWC-132

SWC-133

SWC-134

SWC-136

ODOGH Security Analysis

A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

Contracts can behave erroneously when they strictly assume
a specific Ether balance.

Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

The transfer() and send() functions forward a fixed amount
of 2300 gas.

It is a common misconception that private type variables
cannot be read.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

@ SYSFIXED ODOGH Security Analysis

SMART CONTRACT ANALYSIS

Started Friday May 14 2021 21:28:25 GMT+0000 (Coordinated Universal Time)
Finished Saturday May 15 2021 07:33:54 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File AdminUpgradeabilityProxy.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged
SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged
SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

@ SYSFIXED ODOGH Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 273

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- AdminUpgradeabilityProxy.sol

Locations

272 constructor (address _logic, bytes nenmory _data) public payable {
273 assert (1 MPLEMENTATI ON_SLOT ==

byt es32(ui nt 256(keccak256("' ei p1967. proxy.i nplenentation')) - 1));

274 _setlnplenentation(_|ogic);

275 if(_data.length > 0) {

276 (bool success,) = _logic.del egatecall(_data);

277

@ SYSFIXED ODOGH Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 353

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- AdminUpgradeabilityProxy.sol

Locations

352 constructor (address _logic, address _adnin, bytes menory _data)

Upgr adeabi | i tyProxy(_l ogi c, _data) public payable {

353 assert (ADM N_SLOT == byt es32(ui nt 256(keccak256("' ei p1967. proxy.admn')) - 1));
354 _set Adm n(_adm n);

355 }

356

357

@ SYSFIXED ODOGH Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 273

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- AdminUpgradeabilityProxy.sol

Locations

272 constructor (address _logic, bytes nenmory _data) public payable {
273 assert (1 MPLEMENTATI ON_SLOT ==

byt es32(ui nt 256(keccak256("' ei p1967. proxy.i nplenentation')) - 1));

274 _setlnplenentation(_|ogic);

275 if(_data.length > 0) {

276 (bool success,) = _logic.del egatecall(_data);

277

@ SYSFIXED ODOGH Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 353

low SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File
- AdminUpgradeabilityProxy.sol

Locations

352 constructor (address _logic, address _adnin, bytes menory _data)

Upgr adeabi | i tyProxy(_l ogi c, _data) public payable {

353 assert (ADM N_SLOT == byt es32(ui nt 256(keccak256("' ei p1967. proxy.admn')) - 1));
354 _set Adm n(_adm n);

355 }

356

357

@ SYSFIXED ODOGH Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 9

low SEVERITY

The current pragma Solidity directive is ""*0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AdminUpgradeabilityProxy.sol

Locations
8
9 pragma solidity ~0.6.0;
10
11 [**
12 * @itle Proxy
13

@ SYSFIXED ODOGH Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 87

low SEVERITY

The current pragma Solidity directive is "">=0.6.2<0.8.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AdminUpgradeabilityProxy.sol

Locations
86
87 pragma solidity >=0.6.2 <0.8.0;
88
89 /**
90 * @lev Collection of functions related to the address type
91

@ SYSFIXED ODOGH Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 253

low SEVERITY

The current pragma Solidity directive is ""0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AdminUpgradeabilityProxy.sol

Locations

252
253 pragma solidity ~0.6.0;
254
255
256
257

@ SYSFIXED ODOGH Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 331

low SEVERITY

The current pragma Solidity directive is ""0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- AdminUpgradeabilityProxy.sol

Locations

330

331 pragma solidity ~0.6.0;
332

333

334 [**

335

@ SYSFIXED ODOGH Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

@ SYSFIXED ODOGH Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

