
GroveC

Smart Contract
Audit Report

19 Nov 2022

GroveC | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

GroveC | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

GroveC GRV Binance Smart Chain

| Addresses

Contract address 0xf33893de6eb6ae9a67442e066ae9abd228f5290c

Contract deployer address 0xa24c4553AcF893219e8A44e5500FBCFC522BCDd9

| Project Website

https://www.grovetoken.com/

| Codebase

https://bscscan.com/address/0xf33893de6eb6ae9a67442e066ae9abd228f5290c#code

https://www.grovetoken.com/
https://bscscan.com/address/0xf33893de6eb6ae9a67442e066ae9abd228f5290c#code

GroveC | Security Analysis

SUMMARY

The energy consumption and electronic waste generated by traditional cryptocurrency mining methods has
widereaching environmental consequences. As the world looks for greener solutions to tackle climate change
the public perception of cryptocurrency hampers its massive, untapped potential to be a driving force for
positive change. The Grove Green Plan is how GroveToken aims to reverse that negative view and help crypto
realize its latent potential. It is the guiding outline for the hybrid 'green crypto' blockchain ecosystem and
planetfriendly investment business GroveToken is building to pursue the mission of a healthier and wealthier
future for all.

| Contract Summary

Documentation Quality

GroveC provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by GroveC with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 30, 44, 59, 60, 73, 85, 100, 114, 128, 142, 158, 181, 204, 230, 645, 668, 701, 703, 724, 725, 750, 752,
801, 900, 919, 956 and 981.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10, 240, 267,
352, 437, 467 and 850.

GroveC | Security Analysis

CONCLUSION

We have audited the GroveC project released on November 2022 to discover issues and identify potential
security vulnerabilities in GroveC Project. This process is used to find technical issues and security loopholes
which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the GroveC smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, and a floating pragma is set. The current pragma Solidity directive is ""^0.8.0"". It is
recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between
builds. This is especially important if you rely on bytecode-level verification of the code.

GroveC | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

GroveC | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

GroveC | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

GroveC | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Nov 18 2022 17:20:31 GMT+0000 (Coordinated Universal Time)

Finished Saturday Nov 19 2022 11:26:58 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Token.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 30

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

29 unchecked {

30 uint256 c = a + b;

31 if (c < a) return (false, 0);

32 return (true, c);

33 }

34

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 44

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

43 if (b > a) return (false, 0);

44 return (true, a - b);

45 }

46 }

47

48

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 59

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

58 if (a == 0) return (true, 0);

59 uint256 c = a * b;

60 if (c / a != b) return (false, 0);

61 return (true, c);

62 }

63

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 60

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

59 uint256 c = a * b;

60 if (c / a != b) return (false, 0);

61 return (true, c);

62 }

63 }

64

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 73

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

72 if (b == 0) return (false, 0);

73 return (true, a / b);

74 }

75 }

76

77

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 85

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

84 if (b == 0) return (false, 0);

85 return (true, a % b);

86 }

87 }

88

89

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

99 function add(uint256 a, uint256 b) internal pure returns (uint256) {

100 return a + b;

101 }

102

103 /**

104

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 114

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

113 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

114 return a - b;

115 }

116

117 /**

118

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 128

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

127 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

128 return a * b;

129 }

130

131 /**

132

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 142

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

141 function div(uint256 a, uint256 b) internal pure returns (uint256) {

142 return a / b;

143 }

144

145 /**

146

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 158

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

157 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

158 return a % b;

159 }

160

161 /**

162

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 181

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

180 require(b <= a, errorMessage);

181 return a - b;

182 }

183 }

184

185

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 204

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

203 require(b > 0, errorMessage);

204 return a / b;

205 }

206 }

207

208

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 230

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

229 require(b > 0, errorMessage);

230 return a % b;

231 }

232 }

233 }

234

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 645

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

644 address owner = _msgSender();

645 _approve(owner, spender, allowance(owner, spender) + addedValue);

646 return true;

647 }

648

649

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 668

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

667 unchecked {

668 _approve(owner, spender, currentAllowance - subtractedValue);

669 }

670

671 return true;

672

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 701

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

700 unchecked {

701 _balances[from] = fromBalance - amount;

702 }

703 _balances[to] += amount;

704

705

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 703

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

702 }

703 _balances[to] += amount;

704

705 emit Transfer(from, to, amount);

706

707

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 724

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

723

724 _totalSupply += amount;

725 _balances[account] += amount;

726 emit Transfer(address(0), account, amount);

727

728

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 725

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

724 _totalSupply += amount;

725 _balances[account] += amount;

726 emit Transfer(address(0), account, amount);

727

728 _afterTokenTransfer(address(0), account, amount);

729

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 750

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

749 unchecked {

750 _balances[account] = accountBalance - amount;

751 }

752 _totalSupply -= amount;

753

754

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 752

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

751 }

752 _totalSupply -= amount;

753

754 emit Transfer(account, address(0), amount);

755

756

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 801

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

800 unchecked {

801 _approve(owner, spender, currentAllowance - amount);

802 }

803 }

804 }

805

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 900

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

899 if(tax > 0){

900 amount = amount - tax;

901 _transfer(from, _taxAccount, tax);

902 }

903

904

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 919

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

918 if(tax > 0){

919 amount = amount - tax;

920 _transfer(owner, _taxAccount, tax);

921 }

922

923

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 956

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

955

956 if(_Restrictions[to].delay > 0 && _UserRestrictions[from] > block.timestamp -

_Restrictions[to].delay)

957 return false;

958

959 if(_Restrictions[to].delay > 0)

960

GroveC | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 981

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Token.sol

Locations

980 if(_tax > 0)

981 return _amount.mul(_tax).div(10**2);

982 else

983 return 0;

984 }

985

GroveC | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

9

10 pragma solidity ^0.8.0;

11

12 // CAUTION

13 // This version of SafeMath should only be used with Solidity 0.8 or later,

14

GroveC | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 240

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

239

240 pragma solidity ^0.8.0;

241

242 /**

243 * @dev Provides information about the current execution context, including the

244

GroveC | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 267

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

266

267 pragma solidity ^0.8.0;

268

269

270 /**

271

GroveC | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 352

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

351

352 pragma solidity ^0.8.0;

353

354 /**

355 * @dev Interface of the ERC20 standard as defined in the EIP.

356

GroveC | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 437

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

436

437 pragma solidity ^0.8.0;

438

439

440 /**

441

GroveC | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 467

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

466

467 pragma solidity ^0.8.0;

468

469

470

471

GroveC | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 850

low SEVERITY
The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Token.sol

Locations

849 //SPDX-License-Identifier: MIT

850 pragma solidity >=0.8.0;

851

852

853

854

GroveC | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

GroveC | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

