

GroveC Smart Contract Audit Report

19 Nov 2022

TABLE OF CONTENTS

Audited Details

- Audited Project
- Blockchain
- Addresses
- Project Website
- Codebase

Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

Conclusion

Audit Results

Smart Contract Analysis

- Detected Vulnerabilities

Disclaimer

About Us

AUDITED DETAILS

Audited Project

Project name	Token ticker	Blockchain	
GroveC	GRV	Binance Smart Chain	

Addresses

Contract address	0xf33893de6eb6ae9a67442e066ae9abd228f5290c	
Contract deployer address	0xa24c4553AcF893219e8A44e5500FBCFC522BCDd9	

Project Website

https://www.grovetoken.com/

Codebase

https://bscscan.com/address/0xf33893de6eb6ae9a67442e066ae9abd228f5290c#code

SUMMARY

The energy consumption and electronic waste generated by traditional cryptocurrency mining methods has widereaching environmental consequences. As the world looks for greener solutions to tackle climate change the public perception of cryptocurrency hampers its massive, untapped potential to be a driving force for positive change. The Grove Green Plan is how GroveToken aims to reverse that negative view and help crypto realize its latent potential. It is the guiding outline for the hybrid 'green crypto' blockchain ecosystem and planetfriendly investment business GroveToken is building to pursue the mission of a healthier and wealthier future for all.

Contract Summary

Documentation Quality

GroveC provides a very good documentation with standard of solidity base code.

• The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

• Standard solidity basecode and rules are already followed by GroveC with the discovery of several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

Audit Findings Summary

- SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on lines 30, 44, 59, 60, 73, 85, 100, 114, 128, 142, 158, 181, 204, 230, 645, 668, 701, 703, 724, 725, 750, 752, 801, 900, 919, 956 and 981.
- SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 10, 240, 267, 352, 437, 467 and 850.

CONCLUSION

We have audited the GroveC project released on November 2022 to discover issues and identify potential security vulnerabilities in GroveC Project. This process is used to find technical issues and security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the GroveC smart contract code do not pose a considerable risk. The writing of the contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic operation issues, and a floating pragma is set. The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

AUDIT RESULT

Article	Category	Description	Result
Default Visibility	SWC-100 SWC-108	Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously.	PASS
Integer Overflow and Underflow	SWC-101	If unchecked math is used, all math operations should be safe from overflows and underflows.	ISSUE FOUND
Outdated Compiler Version	SWC-102	It is recommended to use a recent version of the Solidity compiler.	PASS
Floating Pragma	SWC-103	Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly.	ISSUE Found
Unchecked Call Return Value	SWC-104	The return value of a message call should be checked.	PASS
Unprotected Ether Withdrawal	SWC-105	Due to missing or insufficient access controls, malicious parties can withdraw from the contract.	PASS
SELFDESTRUCT Instruction	SWC-106	The contract should not be self-destructible while it has funds belonging to users.	PASS
Reentrancy	SWC-107	Check effect interaction pattern should be followed if the code performs recursive call.	PASS
Uninitialized Storage Pointer	SWC-109	Uninitialized local storage variables can point to unexpected storage locations in the contract.	PASS
Assert Violation	SWC-110 SWC-123	Properly functioning code should never reach a failing assert statement.	PASS
Deprecated Solidity Functions	SWC-111	Deprecated built-in functions should never be used.	PASS
Delegate call to Untrusted Callee	SWC-112	Delegatecalls should only be allowed to trusted addresses.	PASS

DoS (Denial of Service)	SWC-113 SWC-128	Execution of the code should never be blocked by a specific contract state unless required.	
Race Conditions	SWC-114	Race Conditions and Transactions Order Dependency should not be possible.	
Authorization through tx.origin	SWC-115	tx.origin should not be used for authorization.	
Block values as a proxy for time	SWC-116	Block numbers should not be used for time calculations.	
Signature Unique ID	SWC-117 SWC-121 SWC-122	Signed messages should always have a unique id. A transaction hash should not be used as a unique id.	
Incorrect Constructor Name	SWC-118	Constructors are special functions that are called only once during the contract creation.	
Shadowing State Variable	SWC-119	State variables should not be shadowed.	
Weak Sources of Randomness	SWC-120	Random values should never be generated from Chain Attributes or be predictable.	
Write to Arbitrary Storage Location	SWC-124	The contract is responsible for ensuring that only authorized user or contract accounts may write to sensitive storage locations.	
Incorrect Inheritance Order	ect e Order SWC-125 When inheriting multiple contracts, especially if they have identical functions, a developer should carefully specify inheritance in the correct order. The rule of thumb is to inherit contracts from more /general/ to more /specific/.		PASS
Insufficient Gas Griefing	SWC-126	Insufficient gas griefing attacks can be performed on contracts which accept data and use it in a sub-call on another contract.	
Arbitrary Jump Function	SWC-127	As Solidity doesnt support pointer arithmetics, it is impossible to change such variable to an arbitrary value.	

Typographical Error	SWC-129	A typographical error can occur for example when the intent of a defined operation is to sum a number to a variable.	
Override control character	SWC-130	Malicious actors can use the Right-To-Left-Override unicode character to force RTL text rendering and confuse users as to the real intent of a contract.	
Unused variables	SWC-131 SWC-135	Unused variables are allowed in Solidity and they do not pose a direct security issue.	
Unexpected Ether balance	SWC-132	Contracts can behave erroneously when they strictly assume a specific Ether balance.	
Hash Collisions Variable	SWC-133	Using abi.encodePacked() with multiple variable length arguments can, in certain situations, lead to a hash collision.	
Hardcoded gas amount	SWC-134	The transfer() and send() functions forward a fixed amount of 2300 gas.	
Unencrypted Private Data	SWC-136	It is a common misconception that private type variables cannot be read.	

SMART CONTRACT ANALYSIS

Started	Friday Nov 18 2022 17:20:31 GMT+0000 (Coordinated Universal Time)		
Finished	Saturday Nov 19 2022 11:26:58 GMT+0000 (Coordinated Universal Time)		
Mode	Standard		
Main Source File	Token.sol		

Detected Issues

ID	Title	Severity	Status
SWC-101	ARITHMETIC OPERATION "+" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "*" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "/" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "/" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "%" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "+" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "*" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "/" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "%" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "/" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "%" DISCOVERED	low	acknowledged

SWC-101	ARITHMETIC OPERATION "+" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "+=" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "+=" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "+=" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-=" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "-" DISCOVERED	low	acknowledged
SWC-101	ARITHMETIC OPERATION "**" DISCOVERED	low	acknowledged
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged
SWC-103	A FLOATING PRAGMA IS SET.	low	acknowledged

LINE 30

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
29 unchecked {
30 uint256 c = a + b;
31 if (c < a) return (false, 0);
32 return (true, c);
33 }
34</pre>
```


LINE 44

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
43 if (b > a) return (false, 0);
44 return (true, a - b);
45 }
46 }
47 
48
```


LINE 59

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
58 if (a == 0) return (true, 0);
59 uint256 c = a * b;
60 if (c / a != b) return (false, 0);
61 return (true, c);
62 }
63
```


LINE 60

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
59 uint256 c = a * b;
60 if (c / a != b) return (false, 0);
61 return (true, c);
62 }
63 }
64
```


LINE 73

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
72 if (b == 0) return (false, 0);
73 return (true, a / b);
74 }
75 }
76
77
```


LINE 85

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
84 if (b == 0) return (false, 0);
85 return (true, a % b);
86 }
87 }
88
89
```


LINE 100

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
99 function add(uint256 a, uint256 b) internal pure returns (uint256) {
100 return a + b;
101 }
102
103 /**
104
```


LINE 114

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
113 function sub(uint256 a, uint256 b) internal pure returns (uint256) {
114 return a - b;
115 }
116
117 /**
118
```


LINE 128

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
127 function mul(uint256 a, uint256 b) internal pure returns (uint256) {
128 return a * b;
129 }
130
131 /**
132
```


LINE 142

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
141 function div(uint256 a, uint256 b) internal pure returns (uint256) {
142 return a / b;
143 }
144
145 /**
146
```


LINE 158

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
157 function mod(uint256 a, uint256 b) internal pure returns (uint256) {
158 return a % b;
159 }
160
161 /**
162
```


LINE 181

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
180 require(b <= a, errorMessage);
181 return a - b;
182 }
183 }
184
185</pre>
```


LINE 204

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
203 require(b > 0, errorMessage);
204 return a / b;
205 }
206 }
207
208
```


LINE 230

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
229 require(b > 0, errorMessage);
230 return a % b;
231 }
232 }
233 }
233 }
```


LINE 645

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
644 address owner = _msgSender();
645 _approve(owner, spender, allowance(owner, spender) + addedValue);
646 return true;
647 }
648
649
```


LINE 668

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
667 unchecked {
668 _approve(owner, spender, currentAllowance - subtractedValue);
669 }
670
671 return true;
672
```


LINE 701

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
700 unchecked {
701 _balances[from] = fromBalance - amount;
702 }
703 _balances[to] += amount;
704
705
```


LINE 703

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

Locations

702 }
703 _balances[to] += amount;
704
705 emit Transfer(from, to, amount);
706
707

LINE 724

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

Locations

723
724 _totalSupply += amount;
725 _balances[account] += amount;
726 emit Transfer(address(0), account, amount);
727
728

LINE 725

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

Locations

724 _totalSupply += amount; 725 _balances[account] += amount; 726 emit Transfer(address(0), account, amount); 727 728 _afterTokenTransfer(address(0), account, amount); 729

LINE 750

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
749 unchecked {
750 _balances[account] = accountBalance - amount;
751 }
752 _totalSupply -= amount;
753
754
```


LINE 752

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
751 }
752 _totalSupply -= amount;
753
754 emit Transfer(account, address(0), amount);
755
756
```


LINE 801

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
800 unchecked {
801 _approve(owner, spender, currentAllowance - amount);
802 }
803 }
804 }
805
```


LINE 900

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
899 if(tax > 0){
900 amount = amount - tax;
901 _transfer(from, _taxAccount, tax);
902 }
903
904
```


SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED

LINE 919

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
918 if(tax > 0){
919 amount = amount - tax;
920 _transfer(owner, _taxAccount, tax);
921 }
922
923
```


LINE 956

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
955
956 if(_Restrictions[to].delay > 0 && _UserRestrictions[from] > block.timestamp -
_Restrictions[to].delay)
957 return false;
958
959 if(_Restrictions[to].delay > 0)
960
```


LINE 981

Iow SEVERITY

This plugin produces issues to support false positive discovery within mythril.

Source File

- Token.sol

```
980 if(_tax > 0)
981 return _amount.mul(_tax).div(10**2);
982 else
983 return 0;
984 }
985
```


LINE 10

Iow SEVERITY

The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Token.sol

Locations

9
10 pragma solidity ^0.8.0;
11
12 // CAUTION
13 // This version of SafeMath should only be used with Solidity 0.8 or later,
14

LINE 240

Iow SEVERITY

The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Token.sol

Locations

239
240 pragma solidity ^0.8.0;
241
242 /**
243 * @dev Provides information about the current execution context, including the
244

LINE 267

Iow SEVERITY

The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Token.sol

Locations

266 267 pragma solidity ^0.8.0; 268 269 270 /** 271

LINE 352

Iow SEVERITY

The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Token.sol

Locations

351
352 pragma solidity ^0.8.0;
353
354 /**
355 * @dev Interface of the ERC20 standard as defined in the EIP.
356

LINE 437

Iow SEVERITY

The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Token.sol

Locations

436
437 pragma solidity ^0.8.0;
438
439
440 /**
441

LINE 467

Iow SEVERITY

The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Token.sol

Locations

466
467 pragma solidity ^0.8.0;
468
469
470
471

LINE 850

Iow SEVERITY

The current pragma Solidity directive is "">=0.8.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

Source File

- Token.sol

Locations

849 //SPDX-License-Identifier: MIT 850 pragma solidity >=0.8.0; 851 852 853 854

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions provided to you ("Customer" or the "Company") in connection with the Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in each instance.

This report is not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. This report is not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Sysfixed to perform a security assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business, business model, or legal compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based on smart contracts, the details of which are set out in this report. In order to get a full view of our analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and producing this report, it is important to note that you should not rely on this report and cannot claim against us on the basis of what it says or doesn't say, or how we produced it, and it is important for you to conduct your own independent investigations before making any decisions. We go into more detail on this in the below disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any particular project. This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report represents an extensive assessing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other representatives) (Sysfixed) owe no duty of care.

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts. Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and improvement of our tools and techniques used to fortify your code.