
GreenLeage

Smart Contract
Audit Report

20 Jan 2023

GreenLeage | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

GreenLeage | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

GreenLeage GL BSC

| Addresses

Contract address 0xeFDA7E5b3529123b6283426D60A0788420307ACf

Contract deployer address 0x4f5E308dFecA0391EB366300f2bDAEF08352ae77

| Project Website

https://www.greenleage.top/

| Codebase

https://bscscan.com/address/0xeFDA7E5b3529123b6283426D60A0788420307ACf#contracts

https://www.greenleage.top/
https://bscscan.com/address/0xeFDA7E5b3529123b6283426D60A0788420307ACf#contracts

GreenLeage | Security Analysis

SUMMARY

Green League is an open protocol connecting funders to rural planters worldwide. The GreenPay Green Pay is a
TON-based digital wallet bot, uses fiat currency to trade $GL. The Entity organization Project was jointly
created by Rural tree planters, Individual and organizational tree funders, Partner NGOs, Open-source
contributors, and Other organizations who care about the future of our planet. Blockchain Development -
Berliner Experienced developer, it used to work for TeslaSafe(200X), Berliner, DK.

| Contract Summary

Documentation Quality

GreenLeage provides a document with a very good standard of solidity base code.

The technical description is provided clearly and structured but also has a low risk issue.

Code Quality

The Overall quality of the basecode is GOOD

Standart solidity basecode and rules are already followed with GreenLeage Project .

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | Arithmetic operation Issues discovered on lines 145, 177, 200, 201, 236, 272, 529, and 557.
SWC-103 | A floating pragma is set on lines 11, 91, and 118. The current pragma Solidity directive is
""^0.8.17"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced
does not vary between builds. This is especially important if you rely on bytecode-level verification of the
code.
SWC-108 | State variable visibility is not set on lines 531.It is best practice to set the visibility of state
variables explicitly. The default visibility for "protections" is internal. Other possible visibility settings are
public and private.
SWC-110 | Out of bounds array access on lines 732

GreenLeage | Security Analysis

CONCLUSION

We have audited the GreenLeage Coin which has released on January 2023 to discover issues and identify
potential security vulnerabilities in GreenLeage Project. This process is used to find bugs, technical issues, and
security loopholes that find some common issues in the code.

The security audit report produced satisfactory results with a low risk issue on the contract project.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. Some of the low issues that we found were assert
violation, floating pragma set, and default visibility. The functions and state variables visibility should be set
explicitly. Visibility levels should be specified consciously.

GreenLeage | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

GreenLeage | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

GreenLeage | Security Analysis

SMART CONTRACT ANALYSIS

Started Thu Jan 19 2023 07:30:23 GMT+0000 (Coordinated Universal Time)

Finished Fri Jan 20 2023 08:31:13 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File gl.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 145

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

144 function add(uint256 a, uint256 b) internal pure returns (uint256) {

145 uint256 c = a + b;

146 require(c >= a, "SafeMath: addition overflow");

147

148 return c;

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 177

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

176 require(b <= a, errorMessage);

177 uint256 c = a - b;

178

179 return c;

180 }

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 200

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

199

200 uint256 c = a * b;

201 require(c / a == b, "SafeMath: multiplication overflow");

202

203 return c;

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 201

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

200 uint256 c = a * b;

201 require(c / a == b, "SafeMath: multiplication overflow");

202

203 return c;

204 }

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 236

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

235 require(b > 0, errorMessage);

236 uint256 c = a / b;

237 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

238

239 return c;

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 272

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

271 require(b != 0, errorMessage);

272 return a % b;

273 }

274 }

275

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 529

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

528 address public deadAddress = 0x000000000000000000000000000000000000dEaD;

529 uint256 private minimumTokensBeforeSwap = 20000 * 10 ** 18;

530

531 bool inSwapAndLiquify;

532 bool public swapAndLiquifyEnabled = true;

GreenLeage | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 557

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- gl.sol

Locations

556 _decimals = 18;

557 uint256 amount = 100000000 * 10 ** 18;

558 _totalSupply = amount;

559

560 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E);

GreenLeage | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 11

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- gl.sol

Locations

10

11 pragma solidity ^0.6.0;

12

13 /**

14 * @dev Interface of the ERC20 standard as defined in the EIP.

GreenLeage | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 91

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- gl.sol

Locations

90

91 pragma solidity ^0.6.0;

92

93 /*

94 * @dev Provides information about the current execution context, including the

GreenLeage | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 118

low SEVERITY
The current pragma Solidity directive is ""^0.6.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- gl.sol

Locations

117

118 pragma solidity ^0.6.0;

119

120 /**

121 * @dev Wrappers over Solidity's arithmetic operations with added overflow

GreenLeage | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 531

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- gl.sol

Locations

530

531 bool inSwapAndLiquify;

532 bool public swapAndLiquifyEnabled = true;

533 bool public swapAndLiquifyByLimitOnly = false;

534

GreenLeage | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 732

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- gl.sol

Locations

731 address[] memory path = new address[](2);

732 path[0] = address(this);

733 path[1] = uniswapV2Router.WETH();

734

735 _approve(address(this), address(uniswapV2Router), tokenAmount);

GreenLeage | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 733

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- gl.sol

Locations

732 path[0] = address(this);

733 path[1] = uniswapV2Router.WETH();

734

735 _approve(address(this), address(uniswapV2Router), tokenAmount);

736

GreenLeage | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

GreenLeage | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

