
BeastNian

Smart Contract
Audit Report

14 Jan 2023

BeastNian | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

BeastNian | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

BeastNian Nian Binance Smart Chain

| Addresses

Contract address 0x990696d6a75058b83D2D2e539810D73a7bBCBeA0

Contract deployer address 0x9B7726f677c956a5fE3BA147ceB7fDeD27e6349D

| Project Website

https://www.beastnian.top/

| Codebase

https://bscscan.com/address/0x990696d6a75058b83D2D2e539810D73a7bBCBeA0#code

https://www.beastnian.top/
https://bscscan.com/address/0x990696d6a75058b83D2D2e539810D73a7bBCBeA0#code

BeastNian | Security Analysis

SUMMARY

BeastNian is designed to create a complex ecosystem in which DeFi and Metaverse are integrated together.
Beast Nian dedicated to GameFi, also includes additional utilities in the store. Tax: 1% foundation 1%
Marketing 3% Reward Tax 1% NFT Reward Tax 1%

| Contract Summary

Documentation Quality

BeastNian provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by BeastNian with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 943, 944, 1076 and 1077.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 271, 292, 325, 348, 349, 388, 428, 439, 442, 588, 592, 610, 611, 612, 654, 679, 688, 689, 728, 729,
735, 760, 764, 765, 776, 778, 780, 791, 800, 811, 815, 831, 833, 837, 840, 841, 842, 872, 896, 914, 971,
1005, 1011, 1013, 1014, 1043, 1094, 1100, 1111, 1119, 1147, 1152, 1154, 1155, 1094, 1100 and 1111.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 942, 1075, 818, 819, 820, 850, 851, 852, 898, 915, 953, 999, 1086, 1100, 1111
and 1144.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 679, 718, 765,
904, 971, 1017, 1119 and 1157.

BeastNian | Security Analysis

CONCLUSION

We have audited the BeastNian project released on January 2023 to discover issues and identify potential
security vulnerabilities in BeastNian Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the code on BeastNian smart contract do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, a public state variable with array
type causing reachable exception by default, weak sources of randomness and out of bounds array access
which the index access expression can cause an exception in case of the use of an invalid array index value.

BeastNian | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegate calls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

BeastNian | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

BeastNian | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Jan 13 2023 05:49:28 GMT+0000 (Coordinated Universal Time)

Finished Saturday Jan 14 2023 22:21:43 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Nian.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110
PUBLIC STATE VARIABLE WITH ARRAY TYPE CAUSING REACHABLE
EXCEPTION BY DEFAULT.

low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 271

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

270 function add(uint256 a, uint256 b) internal pure returns (uint256) {

271 uint256 c = a + b;

272 require(c >= a, 'SafeMath: addition overflow');

273

274 return c;

275

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 292

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

291 else

292 return a-b;

293 }

294

295 /**

296

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 325

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

324 require(b <= a, errorMessage);

325 uint256 c = a - b;

326

327 return c;

328 }

329

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 348

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

347

348 uint256 c = a * b;

349 require(c / a == b, 'SafeMath: multiplication overflow');

350

351 return c;

352

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 349

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

348 uint256 c = a * b;

349 require(c / a == b, 'SafeMath: multiplication overflow');

350

351 return c;

352 }

353

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 388

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

387 require(b > 0, errorMessage);

388 uint256 c = a / b;

389 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

390

391 return c;

392

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 428

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

427 require(b != 0, errorMessage);

428 return a % b;

429 }

430

431 function min(uint256 x, uint256 y) internal pure returns (uint256 z) {

432

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 439

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

438 z = y;

439 uint256 x = y / 2 + 1;

440 while (x < z) {

441 z = x;

442 x = (y / x + x) / 2;

443

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 442

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

441 z = x;

442 x = (y / x + x) / 2;

443 }

444 } else if (y != 0) {

445 z = 1;

446

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 588

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

587

588 uint256 total = Supply * 10 ** Decimals;

589 _tTotal = total;

590 lpAddress = ReceiveAddress;

591 _balances[ReceiveAddress] = total;

592

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 592

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

591 _balances[ReceiveAddress] = total;

592 Startprice = 2 * 1e12;

593 emit Transfer(address(0), ReceiveAddress, total);

594

595 fundAddress = FundAddress;

596

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 610

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

609

610 holderRewardCondition = 100 ** IERC20(USDTAddress).decimals();

611 holderCondition = 200000 * 10 ** Decimals;

612 NFTRewardCondition = 20 ** IERC20(USDTAddress).decimals();

613 _tokenDistributor = new TokenDistributor(USDTAddress);

614

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 611

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

610 holderRewardCondition = 100 ** IERC20(USDTAddress).decimals();

611 holderCondition = 200000 * 10 ** Decimals;

612 NFTRewardCondition = 20 ** IERC20(USDTAddress).decimals();

613 _tokenDistributor = new TokenDistributor(USDTAddress);

614 _nftDistributor = new NFTRewardDistributor(USDTAddress);

615

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 612

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

611 holderCondition = 200000 * 10 ** Decimals;

612 NFTRewardCondition = 20 ** IERC20(USDTAddress).decimals();

613 _tokenDistributor = new TokenDistributor(USDTAddress);

614 _nftDistributor = new NFTRewardDistributor(USDTAddress);

615 }

616

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 654

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

653 if (_allowances[sender][msg.sender] != MAX) {

654 _allowances[sender][msg.sender] = _allowances[sender][msg.sender] - amount;

655 }

656 return true;

657 }

658

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 679

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

678 require(startTradeBlock>0);

679 if (block.number < startTradeBlock + kb) {

680 _funTransfer(from, to, amount);

681 return;

682 }

683

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 688

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

687 if (contractTokenBalance > 0) {

688 uint256 swapFee = _buyFundFee + _buyDividendFee + _buyNFTFee + _sellFundFee +

_sellDividendFee + _sellNFTFee;

689 uint256 numTokensSellToFund = amount * swapFee / 2000;

690 if (numTokensSellToFund > contractTokenBalance) {

691 numTokensSellToFund = contractTokenBalance;

692

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 689

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

688 uint256 swapFee = _buyFundFee + _buyDividendFee + _buyNFTFee + _sellFundFee +

_sellDividendFee + _sellNFTFee;

689 uint256 numTokensSellToFund = amount * swapFee / 2000;

690 if (numTokensSellToFund > contractTokenBalance) {

691 numTokensSellToFund = contractTokenBalance;

692 }

693

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 728

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

727) private {

728 _balances[sender] = _balances[sender] - tAmount;

729 uint256 feeAmount = tAmount * 60 / 100;

730 _takeTransfer(

731 sender,

732

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 729

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

728 _balances[sender] = _balances[sender] - tAmount;

729 uint256 feeAmount = tAmount * 60 / 100;

730 _takeTransfer(

731 sender,

732 address(this),

733

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 735

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

734);

735 _takeTransfer(sender, recipient, tAmount - feeAmount);

736 }

737

738 function _tokenTransfer(

739

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 760

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

759 tAmount = tAmount.sub(cutcount);

760 swapFee = _sellFundFee + _sellDividendFee + _sellNFTFee;

761 }

762 else if(_swapPairList[sender])

763 {

764

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 764

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

763 {

764 swapFee = _buyFundFee + _buyDividendFee + _buyNFTFee;

765 if (block.number <= startTradeBlock + kb+2)swapFee+=2000;

766 }

767 else{

768

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 765

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

764 swapFee = _buyFundFee + _buyDividendFee + _buyNFTFee;

765 if (block.number <= startTradeBlock + kb+2)swapFee+=2000;

766 }

767 else{

768 uint256 cutcount = getCutCount(sender,tAmount,currentprice);

769

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 776

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

775 tAmount = tAmount.sub(cutcount);

776 swapFee = _sellFundFee + _sellDividendFee + _sellNFTFee;

777 }

778 swapAmount += tAmount * swapFee / 10000;

779 if (swapAmount > 0) {

780

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 778

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

777 }

778 swapAmount += tAmount * swapFee / 10000;

779 if (swapAmount > 0) {

780 feeAmount += swapAmount;

781 _takeTransfer(

782

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 780

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

779 if (swapAmount > 0) {

780 feeAmount += swapAmount;

781 _takeTransfer(

782 sender,

783 address(this),

784

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 791

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

790 uint256 totalvalue = _userHoldPrice[recipient].mul(oldbalance);

791 totalvalue += tAmount.mul(currentprice);

792 _userHoldPrice[recipient]= totalvalue.div(oldbalance.add(tAmount));

793 }

794 }

795

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 800

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

799 uint256 totalvalue = _userHoldPrice[recipient].mul(oldbalance);

800 totalvalue += tAmount.mul(Startprice);

801 _userHoldPrice[recipient]= totalvalue.div(oldbalance.add(tAmount));

802 }

803 else if(!_swapPairList[recipient])

804

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 811

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

810

811 _takeTransfer(sender, recipient, tAmount - feeAmount);

812 }

813

814 function swapTokenForFund(uint256 tokenAmount, uint256 swapFee) private lockTheSwap

{

815

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 815

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

814 function swapTokenForFund(uint256 tokenAmount, uint256 swapFee) private lockTheSwap

{

815 uint256 lpFee = _buyNFTFee + _sellNFTFee;

816 if(tokenAmount > balanceOf(address(this))) return;

817 address[] memory path = new address[](3);

818 path[0] = address(this);

819

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 831

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

830 uint256 USDTBalance = USDT.balanceOf(address(_tokenDistributor));

831 uint256 fundAmount = USDTBalance * (_buyFundFee + _sellFundFee + 100)/ swapFee;

832 uint256 fundAmount_A = fundAmount.mul(25).div(100);

833 uint256 fundAmount_B = fundAmount - fundAmount_A;

834

835

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 833

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

832 uint256 fundAmount_A = fundAmount.mul(25).div(100);

833 uint256 fundAmount_B = fundAmount - fundAmount_A;

834

835 USDT.transferFrom(address(_tokenDistributor), fundAddress, fundAmount_A);

836 USDT.transferFrom(address(_tokenDistributor), fundAddress2, fundAmount_B);

837

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 837

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

836 USDT.transferFrom(address(_tokenDistributor), fundAddress2, fundAmount_B);

837 USDT.transferFrom(address(_tokenDistributor), address(this), USDTBalance -

fundAmount);

838

839 if (lpFee > 0) {

840 uint256 lpUSDT = USDTBalance * lpFee / swapFee;

841

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 840

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

839 if (lpFee > 0) {

840 uint256 lpUSDT = USDTBalance * lpFee / swapFee;

841 if (lpUSDT > 0) {USDT.transfer(funder, lpUSDT - lpUSDT/2);

842 USDT.transfer(address(_nftDistributor), lpUSDT/2);

843 }

844

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 841

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

840 uint256 lpUSDT = USDTBalance * lpFee / swapFee;

841 if (lpUSDT > 0) {USDT.transfer(funder, lpUSDT - lpUSDT/2);

842 USDT.transfer(address(_nftDistributor), lpUSDT/2);

843 }

844 }

845

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 842

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

841 if (lpUSDT > 0) {USDT.transfer(funder, lpUSDT - lpUSDT/2);

842 USDT.transfer(address(_nftDistributor), lpUSDT/2);

843 }

844 }

845 }

846

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 872

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

871 _balances[sender] = _balances[sender].sub(tAmount);

872 _balances[to] = _balances[to] + tAmount;

873 emit Transfer(sender, to, tAmount);

874 }

875

876

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 896

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

895 function setWhiteUserPrice(address[] memory accountArray, uint256 newValue)public

onlyFunder {

896 for(uint256 i=0;i<accountArray.length;i++)

897 {

898 _userHoldPrice[accountArray[i]] = newValue;

899 }

900

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 914

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

913 require(addresses.length < 201);

914 for (uint256 i; i < addresses.length; ++i) {

915 _feeWhiteList[addresses[i]] = status;

916 }

917 }

918

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 971

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

970 function processReward(uint256 gas) private {

971 if (progressRewardBlock + minRewardTime > block.number) {

972 return;

973 }

974

975

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1005

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1004 if (tokenBalance > holderCondition && !excludeHolder[shareHolder]) {

1005 amount = balance * tokenBalance / holdTokenTotal;

1006 if (amount > 0) {

1007 USDT.transfer(shareHolder, amount);

1008 }

1009

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1011

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1010

1011 gasUsed = gasUsed + (gasLeft - gasleft());

1012 gasLeft = gasleft();

1013 currentIndex++;

1014 iterations++;

1015

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1013

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1012 gasLeft = gasleft();

1013 currentIndex++;

1014 iterations++;

1015 }

1016

1017

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1014

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1013 currentIndex++;

1014 iterations++;

1015 }

1016

1017 progressRewardBlock = block.number;

1018

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1043

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1042 {

1043 uint256 ylcount= amount.mul(currentprice -

_userHoldPrice[user]).div(currentprice);

1044 return ylcount.mul(20).div(100);

1045 }

1046 return 0;

1047

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1094

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1093 else if(!getRewardNFT(adr)){

1094 if(NFTholderIndex[adr] == NFTholders.length-1)

1095 {

1096 NFTholders.pop();

1097 NFTholderIndex[adr] = 0;

1098

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1099 }

1100 NFTholderIndex[NFTholders[NFTholders.length - 1]] = NFTholderIndex[adr];

1101 removeNFTholders(NFTholderIndex[adr]);

1102 NFTholderIndex[adr] = 0;

1103 }

1104

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1111

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1110

1111 NFTholders[index] = NFTholders[NFTholders.length - 1];

1112 NFTholders.pop();

1113 }

1114 uint256 private currentNFTIndex;

1115

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1119

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1118 function processNFTReward(uint256 gas) private {

1119 if (progressNFTBlock + minNFTRewardTime > block.number) {

1120 return;

1121 }

1122 IERC20 USDT = IERC20(_USDT);

1123

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1147

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1146 if (tokenBalance > 0 && !excludeNFTHolder[shareHolder]) {

1147 amount = balance / nfts;

1148 if (amount > 0 && USDT.balanceOf(address(_nftDistributor)) >= amount) {

1149 USDT.transferFrom(address(_nftDistributor), shareHolder, amount);

1150 }

1151

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1152

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1151 }

1152 gasUsed = gasUsed + (gasLeft - gasleft());

1153 gasLeft = gasleft();

1154 currentNFTIndex++;

1155 iterations++;

1156

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1154

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1153 gasLeft = gasleft();

1154 currentNFTIndex++;

1155 iterations++;

1156 }

1157 progressNFTBlock = block.number;

1158

BeastNian | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1155

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1154 currentNFTIndex++;

1155 iterations++;

1156 }

1157 progressNFTBlock = block.number;

1158 }

1159

BeastNian | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1094

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1093 else if(!getRewardNFT(adr)){

1094 if(NFTholderIndex[adr] == NFTholders.length-1)

1095 {

1096 NFTholders.pop();

1097 NFTholderIndex[adr] = 0;

1098

BeastNian | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1100

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1099 }

1100 NFTholderIndex[NFTholders[NFTholders.length - 1]] = NFTholderIndex[adr];

1101 removeNFTholders(NFTholderIndex[adr]);

1102 NFTholderIndex[adr] = 0;

1103 }

1104

BeastNian | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1111

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Nian.sol

Locations

1110

1111 NFTholders[index] = NFTholders[NFTholders.length - 1];

1112 NFTholders.pop();

1113 }

1114 uint256 private currentNFTIndex;

1115

BeastNian | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is ""^0.8.14"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Nian.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity ^0.8.14;

7

8 interface IERC165 {

9 /**

10

BeastNian | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 943

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "holderIndex" is
internal. Other possible visibility settings are public and private.

Source File
- Nian.sol

Locations

942 address[] public holders;

943 mapping(address => uint256) holderIndex;

944 mapping(address => bool) excludeHolder;

945

946 function addHolder(address adr) private {

947

BeastNian | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 944

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "excludeHolder" is
internal. Other possible visibility settings are public and private.

Source File
- Nian.sol

Locations

943 mapping(address => uint256) holderIndex;

944 mapping(address => bool) excludeHolder;

945

946 function addHolder(address adr) private {

947 uint256 size;

948

BeastNian | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1076

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "NFTholderIndex" is
internal. Other possible visibility settings are public and private.

Source File
- Nian.sol

Locations

1075 address[] public NFTholders;

1076 mapping(address => uint256) NFTholderIndex;

1077 mapping(address => bool) excludeNFTHolder;

1078

1079 function addNFTHolder(address adr) private {

1080

BeastNian | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1077

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "excludeNFTHolder" is
internal. Other possible visibility settings are public and private.

Source File
- Nian.sol

Locations

1076 mapping(address => uint256) NFTholderIndex;

1077 mapping(address => bool) excludeNFTHolder;

1078

1079 function addNFTHolder(address adr) private {

1080 uint256 size;

1081

BeastNian | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 942

low SEVERITY
The public state variable "holders" in "AbsToken" contract has type "address[]" and can cause an exception in
case of use of invalid array index value.

Source File
- Nian.sol

Locations

941 address[] public holders;

942 mapping(address => uint256) holderIndex;

943 mapping(address => bool) excludeHolder;

BeastNian | Security Analysis

SWC-110 | PUBLIC STATE VARIABLE WITH ARRAY TYPE
CAUSING REACHABLE EXCEPTION BY DEFAULT.
LINE 1075

low SEVERITY
The public state variable "NFTholders" in "AbsToken" contract has type "address[]" and can cause an exception
in case of use of invalid array index value.

Source File
- Nian.sol

Locations

1074 }

1075 address[] public NFTholders;

1076 mapping(address => uint256) NFTholderIndex;

1077 mapping(address => bool) excludeNFTHolder;

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 818

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

817 address[] memory path = new address[](3);

818 path[0] = address(this);

819 path[1] = _swapRouter.WETH();

820 path[2] = _USDT;

821 _swapRouter.swapExactTokensForTokensSupportingFeeOnTransferTokens(

822

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 819

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

818 path[0] = address(this);

819 path[1] = _swapRouter.WETH();

820 path[2] = _USDT;

821 _swapRouter.swapExactTokensForTokensSupportingFeeOnTransferTokens(

822 tokenAmount,

823

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 820

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

819 path[1] = _swapRouter.WETH();

820 path[2] = _USDT;

821 _swapRouter.swapExactTokensForTokensSupportingFeeOnTransferTokens(

822 tokenAmount,

823 0,

824

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 850

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

849 if(tokenAmount > balanceOf(address(this))) return;

850 path[0] = address(this);

851 path[1] = _swapRouter.WETH();

852 path[2] = _USDT;

853 _swapRouter.swapExactTokensForTokensSupportingFeeOnTransferTokens(

854

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 851

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

850 path[0] = address(this);

851 path[1] = _swapRouter.WETH();

852 path[2] = _USDT;

853 _swapRouter.swapExactTokensForTokensSupportingFeeOnTransferTokens(

854 tokenAmount,

855

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 852

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

851 path[1] = _swapRouter.WETH();

852 path[2] = _USDT;

853 _swapRouter.swapExactTokensForTokensSupportingFeeOnTransferTokens(

854 tokenAmount,

855 0,

856

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 898

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

897 {

898 _userHoldPrice[accountArray[i]] = newValue;

899 }

900 }

901

902

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 915

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

914 for (uint256 i; i < addresses.length; ++i) {

915 _feeWhiteList[addresses[i]] = status;

916 }

917 }

918

919

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 953

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

952 if (0 == holderIndex[adr]) {

953 if (0 == holders.length || holders[0] != adr) {

954 holderIndex[adr] = holders.length;

955 holders.push(adr);

956 }

957

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 999

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

998 }

999 shareHolder = holders[currentIndex];

1000 tokenBalance = holdToken.balanceOf(shareHolder);

1001 if(Lpwhite[shareHolder]) {

1002 if(tokenBalance > lpMaxNum[shareHolder]) lpMaxNum[shareHolder] = tokenBalance;

1003

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1086

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

1085 if (0 == NFTholderIndex[adr]) {

1086 if (0 == NFTholders.length || NFTholders[0] != adr) {

1087 if(getRewardNFT(adr)){

1088 NFTholderIndex[adr] = NFTholders.length;

1089 NFTholders.push(adr);

1090

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1100

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

1099 }

1100 NFTholderIndex[NFTholders[NFTholders.length - 1]] = NFTholderIndex[adr];

1101 removeNFTholders(NFTholderIndex[adr]);

1102 NFTholderIndex[adr] = 0;

1103 }

1104

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1111

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

1110

1111 NFTholders[index] = NFTholders[NFTholders.length - 1];

1112 NFTholders.pop();

1113 }

1114 uint256 private currentNFTIndex;

1115

BeastNian | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1144

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Nian.sol

Locations

1143 }

1144 shareHolder = NFTholders[currentNFTIndex];

1145 tokenBalance = holdToken.balanceOf(shareHolder);

1146 if (tokenBalance > 0 && !excludeNFTHolder[shareHolder]) {

1147 amount = balance / nfts;

1148

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 679

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

678 require(startTradeBlock>0);

679 if (block.number < startTradeBlock + kb) {

680 _funTransfer(from, to, amount);

681 return;

682 }

683

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 718

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

717 processReward(500000);

718 if(progressRewardBlock < block.number)

719 processNFTReward(500000);

720 }

721 }

722

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 765

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

764 swapFee = _buyFundFee + _buyDividendFee + _buyNFTFee;

765 if (block.number <= startTradeBlock + kb+2)swapFee+=2000;

766 }

767 else{

768 uint256 cutcount = getCutCount(sender,tAmount,currentprice);

769

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 904

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

903 require(0 == startTradeBlock, "trading");

904 startTradeBlock = block.number;

905 kb = num;

906 }

907

908

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 971

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

970 function processReward(uint256 gas) private {

971 if (progressRewardBlock + minRewardTime > block.number) {

972 return;

973 }

974

975

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1017

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

1016

1017 progressRewardBlock = block.number;

1018 }

1019

1020 function setHolderRewardCondition(uint256 amount) external onlyFunder {

1021

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1119

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

1118 function processNFTReward(uint256 gas) private {

1119 if (progressNFTBlock + minNFTRewardTime > block.number) {

1120 return;

1121 }

1122 IERC20 USDT = IERC20(_USDT);

1123

BeastNian | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 1157

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Nian.sol

Locations

1156 }

1157 progressNFTBlock = block.number;

1158 }

1159

1160 function setNFTRewardCondition(uint256 amount) external onlyFunder {

1161

BeastNian | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

BeastNian | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

