
Monokuma

Smart Contract
Audit Report

27 Jan 2023

Monokuma | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Monokuma | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Monokuma MONO Binance Smart Chain

| Addresses

Contract address 0xc0D0D9A7C2BbCB44BD5EBCf8954d7b54e6933E66

Contract deployer address 0xD57dBD3dA1E66410003934e50F3139f39fD86807

| Project Website

https://monokumabsc.io/

| Codebase

https://bscscan.com/address/0xc0D0D9A7C2BbCB44BD5EBCf8954d7b54e6933E66#code

https://monokumabsc.io/
https://bscscan.com/address/0xc0D0D9A7C2BbCB44BD5EBCf8954d7b54e6933E66#code

Monokuma | Security Analysis

SUMMARY

We present you the multi utility token which allow investors the greatest earning opportunity by burning tokens
from the liquidity pool every 15 minutes to ensure the price of token is continuously rising. | No Private Sale |
No Unlocked Tokens | No Team Tokens | Fair Tokenomics | Low Tax 3/3

| Contract Summary

Documentation Quality

Monokuma provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Monokuma with the discovery of several
low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 110, 160 and 169.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 123, 298, 326, 358, 396, 400, 401, 403, 404, 405, 499, 506, 507, 509, 510, 530, 531, 548, 565, 566,
585, 586, 606, 607, 608, 622, 624, 649, 651 and 655.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 6.
SWC-110 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new REVERT
opcode in the EVM on lines 534, 535, 607 and 608.
SWC-115 | tx.origin should not be used for authorization, use msg.sender instead on lines 456.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 582.

Monokuma | Security Analysis

CONCLUSION

We have audited the Monokuma project released on January 2023 to discover issues and identify potential
security vulnerabilities in Monokuma Project. This process is used to find technical issues and security
loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the code on Monokuma smart contract do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a floating pragma is set, a state variable visibility is not set, weak sources of randomness,
tx.origin as a part of authorization control and out of bounds array access which the index access expression
can cause an exception in case of the use of an invalid array index value.

Monokuma | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Monokuma | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization.
ISSUE

FOUND

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Monokuma | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jan 26 2023 13:07:19 GMT+0000 (Coordinated Universal Time)

Finished Friday Jan 27 2023 05:07:32 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File Monokuma.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-115 USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION CONTROL. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 123

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

122 uint8 constant private _decimals = 18;

123 uint256 constant private _tTotal = startingSupply * 10**_decimals;

124

125 struct Fees {

126 uint16 buyFee;

127

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 298

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

297 if (_allowances[sender][msg.sender] != type(uint256).max) {

298 _allowances[sender][msg.sender] -= amount;

299 }

300

301 return _transfer(sender, recipient, amount);

302

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 326

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

325 if (timeSinceLastPair != 0) {

326 require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown.");

327 }

328 require(!lpPairs[pair], "Pair already added to list.");

329 lpPairs[pair] = true;

330

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 358

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

357 function getCirculatingSupply() public view returns (uint256) {

358 return (_tTotal - (balanceOf(DEAD) + balanceOf(address(0))));

359 }

360

361 //== BLACKLIST

362

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 396

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

395 function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view

returns (uint256) {

396 return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor);

397 }

398

399 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

400

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 400

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

399 function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor,

uint256 amountPercent, uint256 amountDivisor) external onlyOwner {

400 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

401 swapAmount = (_tTotal * amountPercent) / amountDivisor;

402 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

403 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

404

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 401

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

400 swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

401 swapAmount = (_tTotal * amountPercent) / amountDivisor;

402 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

403 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

404 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

405

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 403

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

402 require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");

403 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

404 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

405 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

406 }

407

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 404

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

403 require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be

above 1.5% of current PI.");

404 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

405 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

406 }

407

408

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 405

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

404 require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total

supply.");

405 require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of

total supply.");

406 }

407

408 function setPriceImpactSwapAmount(uint256 priceImpactSwapPercent) external

onlyOwner {

409

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 499

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

498 uint256 swapAmt = swapAmount;

499 if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) /

masterTaxDivisor; }

500 if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }

501 contractSwap(contractTokenBalance);

502 }

503

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 506

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

505 if (lpBurnEnabled) {

506 if (block.timestamp - lpLastBurnStamp >= lpBurnTimeLimit) {

507 uint256 burnAmount = (_tOwned[lpPair] * lpBurnPercent) / masterTaxDivisor;

508 lpLastBurnStamp = block.timestamp;

509 _tOwned[lpPair] -= burnAmount;

510

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 507

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

506 if (block.timestamp - lpLastBurnStamp >= lpBurnTimeLimit) {

507 uint256 burnAmount = (_tOwned[lpPair] * lpBurnPercent) / masterTaxDivisor;

508 lpLastBurnStamp = block.timestamp;

509 _tOwned[lpPair] -= burnAmount;

510 _tOwned[DEAD] += burnAmount;

511

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 509

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

508 lpLastBurnStamp = block.timestamp;

509 _tOwned[lpPair] -= burnAmount;

510 _tOwned[DEAD] += burnAmount;

511 emit Transfer(lpPair, DEAD, burnAmount);

512 IV2Pair(lpPair).sync();

513

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 510

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

509 _tOwned[lpPair] -= burnAmount;

510 _tOwned[DEAD] += burnAmount;

511 emit Transfer(lpPair, DEAD, burnAmount);

512 IV2Pair(lpPair).sync();

513 }

514

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 530

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

529

530 uint256 toLiquify = ((contractTokenBalance * ratios.liquidity) / ratios.totalSwap)

/ 2;

531 uint256 swapAmt = contractTokenBalance - toLiquify;

532

533 address[] memory path = new address[](2);

534

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 531

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

530 uint256 toLiquify = ((contractTokenBalance * ratios.liquidity) / ratios.totalSwap)

/ 2;

531 uint256 swapAmt = contractTokenBalance - toLiquify;

532

533 address[] memory path = new address[](2);

534 path[0] = address(this);

535

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 548

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

547 uint256 amtBalance = address(this).balance;

548 uint256 liquidityBalance = (amtBalance * toLiquify) / swapAmt;

549

550 if (toLiquify > 0) {

551 try dexRouter.addLiquidityETH{value: liquidityBalance}(

552

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 565

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

564

565 amtBalance -= liquidityBalance;

566 ratios.totalSwap -= ratios.liquidity;

567 bool success;

568 (success,) = marketingWallet.call{value: address(this).balance, gas: 55000}("");

569

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 566

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

565 amtBalance -= liquidityBalance;

566 ratios.totalSwap -= ratios.liquidity;

567 bool success;

568 (success,) = marketingWallet.call{value: address(this).balance, gas: 55000}("");

569 }

570

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 585

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

584 allowedPresaleExclusion = false;

585 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

586 swapAmount = (balanceOf(lpPair) * 30) / 10000;

587 launchStamp = block.timestamp;

588 lpBurnEnabled = true;

589

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 586

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

585 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

586 swapAmount = (balanceOf(lpPair) * 30) / 10000;

587 launchStamp = block.timestamp;

588 lpBurnEnabled = true;

589 }

590

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 606

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

605 require(accounts.length == amounts.length, "Lengths do not match.");

606 for (uint16 i = 0; i < accounts.length; i++) {

607 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

608 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

609 }

610

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 607

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

606 for (uint16 i = 0; i < accounts.length; i++) {

607 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

608 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

609 }

610 }

611

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 608

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

607 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

608 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

609 }

610 }

611

612

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 622

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

621 }

622 _tOwned[from] -= amount;

623 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

624 _tOwned[to] += amountReceived;

625 emit Transfer(from, to, amountReceived);

626

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 624

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

623 uint256 amountReceived = (takeFee) ? takeTaxes(from, buy, sell, amount) : amount;

624 _tOwned[to] += amountReceived;

625 emit Transfer(from, to, amountReceived);

626 if (!_hasLiqBeenAdded) {

627 _checkLiquidityAdd(from, to);

628

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 649

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

648 || block.chainid == 56)) { currentFee = 4500; }

649 uint256 feeAmount = amount * currentFee / masterTaxDivisor;

650 if (feeAmount > 0) {

651 _tOwned[address(this)] += feeAmount;

652 emit Transfer(from, address(this), feeAmount);

653

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 651

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

650 if (feeAmount > 0) {

651 _tOwned[address(this)] += feeAmount;

652 emit Transfer(from, address(this), feeAmount);

653 }

654

655

Monokuma | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 655

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- Monokuma.sol

Locations

654

655 return amount - feeAmount;

656 }

657 }

658

Monokuma | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 6

low SEVERITY
The current pragma Solidity directive is "">=0.6.0<0.9.0"". It is recommended to specify a fixed compiler version
to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- Monokuma.sol

Locations

5 // SPDX-License-Identifier: MIT

6 pragma solidity >=0.6.0 <0.9.0;

7

8 interface IERC20 {

9 function totalSupply() external view returns (uint256);

10

Monokuma | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 110

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "lpPairs" is internal.
Other possible visibility settings are public and private.

Source File
- Monokuma.sol

Locations

109 mapping (address => uint256) private _tOwned;

110 mapping (address => bool) lpPairs;

111 uint256 private timeSinceLastPair = 0;

112 mapping (address => mapping (address => uint256)) private _allowances;

113 mapping (address => bool) private _liquidityHolders;

114

Monokuma | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 160

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwap" is internal.
Other possible visibility settings are public and private.

Source File
- Monokuma.sol

Locations

159

160 bool inSwap;

161 bool public contractSwapEnabled = false;

162 uint256 public swapThreshold;

163 uint256 public swapAmount;

164

Monokuma | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 169

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "protections" is
internal. Other possible visibility settings are public and private.

Source File
- Monokuma.sol

Locations

168 bool public _hasLiqBeenAdded = false;

169 Protections protections;

170 uint256 public launchStamp;

171

172 bool public lpBurnEnabled = false;

173

Monokuma | Security Analysis

SWC-115 | USE OF "TX.ORIGIN" AS A PART OF AUTHORIZATION
CONTROL.
LINE 456

low SEVERITY
The tx.origin environment variable has been found to influence a control flow decision. Note that using
"tx.origin" as a security control might cause a situation where a user inadvertently authorizes a smart contract
to perform an action on their behalf. It is recommended to use "msg.sender" instead.

Source File
- Monokuma.sol

Locations

455 && to != _owner

456 && tx.origin != _owner

457 && !_liquidityHolders[to]

458 && !_liquidityHolders[from]

459 && to != DEAD

460

Monokuma | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 534

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Monokuma.sol

Locations

533 address[] memory path = new address[](2);

534 path[0] = address(this);

535 path[1] = dexRouter.WETH();

536

537 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

538

Monokuma | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 535

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Monokuma.sol

Locations

534 path[0] = address(this);

535 path[1] = dexRouter.WETH();

536

537 try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

538 swapAmt,

539

Monokuma | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 607

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Monokuma.sol

Locations

606 for (uint16 i = 0; i < accounts.length; i++) {

607 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

608 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

609 }

610 }

611

Monokuma | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 608

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- Monokuma.sol

Locations

607 require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens.");

608 finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false,

true);

609 }

610 }

611

612

Monokuma | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 582

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- Monokuma.sol

Locations

581 emit ContractSwapEnabledUpdated(true);

582 try protections.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp),

_decimals) {} catch {}

583 tradingEnabled = true;

584 allowedPresaleExclusion = false;

585 swapThreshold = (balanceOf(lpPair) * 10) / 10000;

Monokuma | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Monokuma | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

