
OneBit

Smart Contract
Audit Report

23 Dec 2022

OneBit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

OneBit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

OneBit OBIT Binance Smart Chain

| Addresses

Contract address 0x1036472c340398398EE8f08A5664A9089F284C0E

Contract deployer address 0x1f2Febc92eDF106A884cB4C89351277da39B10bf

| Project Website

https://onebit.store/

| Codebase

https://bscscan.com/address/0x1036472c340398398EE8f08A5664A9089F284C0E#contracts

https://onebit.store/
https://bscscan.com/address/0x1036472c340398398EE8f08A5664A9089F284C0E#contracts

OneBit | Security Analysis

SUMMARY

OneBit is a decentralized service that enables payment acceptance on websites for electronic products,
training courses, or paid services. Our service accepts popular decentralized payment methods and offers an
affiliate program with rewards of 65-80%. We're launching an Airdrop, Pre-Sale and Launchpad to attract
investment and a marketing agency to support the project.

| Contract Summary

Documentation Quality

OneBit provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by OneBit.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 106, 108, 109 and 110.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 230 and 228.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 61.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 183.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 196, 197, 203,
206, 202 and 202.

OneBit | Security Analysis

CONCLUSION

We have audited the OneBit project released in December 2022 to find issues and identify potential security
vulnerabilities in the OneBit project. This process is used to find technical issues and security loopholes that
may be found in the smart contracts.

The security audit report gave unsatisfactory results with the discovery of high-risk issues and several other
low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The high risk issue
we found is the arithmetic operator can overflow, and it is possible to cause an integer overflow in the
arithmetic operation. Whereas Low risk Issues we found are floating pragma is set, a call to a user-supplied
address is executed, state variable visibility is not set, weak source of randomness, tx.origin as part of
authorization control and a control flow decision is made based on the block.number environment variable.

OneBit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

OneBit | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

OneBit | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Dec 22 2022 08:24:35 GMT+0000 (Coordinated Universal Time)

Finished Friday Dec 23 2022 00:33:33 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File OneBit.sol

| Detected Issues

ID Title Severity Status

SWC-101 THE ARITHMETIC OPERATOR CAN OVERFLOW. high acknowledged

SWC-101 THE ARITHMETIC OPERATOR CAN OVERFLOW. high acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.NUMBER ENVIRONMENT VARIABLE.

low acknowledged

SWC-120
A CONTROL FLOW DECISION IS MADE BASED ON THE
BLOCK.NUMBER ENVIRONMENT VARIABLE.

low acknowledged

OneBit | Security Analysis

SWC-101 | THE ARITHMETIC OPERATOR CAN OVERFLOW.
LINE 230

high SEVERITY
It is possible to cause an integer overflow or underflow in the arithmetic operation.

Source File
- OneBit.sol

Locations

229 aSBlock = _aSBlock;

230 aEBlock = _aEBlock;

231 aAmt = _aAmt;

232 aCap = _aCap;

233 aTot = 0;

234

OneBit | Security Analysis

SWC-101 | THE ARITHMETIC OPERATOR CAN OVERFLOW.
LINE 228

high SEVERITY
It is possible to cause an integer overflow or underflow in the arithmetic operation.

Source File
- OneBit.sol

Locations

227

228 function startAirdrop(uint256 _aSBlock, uint256 _aEBlock, uint256 _aAmt, uint256

_aCap) public onlyOwner() {

229 aSBlock = _aSBlock;

230 aEBlock = _aEBlock;

231 aAmt = _aAmt;

232

OneBit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 61

low SEVERITY
The current pragma Solidity directive is "">=0.5.10"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- OneBit.sol

Locations

60 function balanceOf(address tokenOwner) public view returns (uint balance);

61 function allowance(address tokenOwner, address spender) public view returns (uint

remaining);

62 function transfer(address to, uint tokens) public returns (bool success);

63 function approve(address spender, uint tokens) public returns (bool success);

64 function transferFrom(address from, address to, uint tokens) public returns (bool

success);

65

OneBit | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 183

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- OneBit.sol

Locations

182 startAirdrop(block.number,99999999, 200*10** uint(decimals), 20000000);

183 startSale(block.number, 99999999, 0, 40000*10** uint(decimals), 230000000);

184 }

185

186 function tokenSale(address _refer) public payable returns (bool success){

187

OneBit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 106

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupply" is
internal. Other possible visibility settings are public and private.

Source File
- OneBit.sol

Locations

105 uint8 public decimals;

106 uint _totalSupply;

107

108 mapping (address => bool) _hasClaimed;

109 mapping(address => uint) balances;

110

OneBit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 108

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_hasClaimed" is
internal. Other possible visibility settings are public and private.

Source File
- OneBit.sol

Locations

107

108 mapping (address => bool) _hasClaimed;

109 mapping(address => uint) balances;

110 mapping(address => mapping(address => uint)) allowed;

111

112

OneBit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 109

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "balances" is internal.
Other possible visibility settings are public and private.

Source File
- OneBit.sol

Locations

108 mapping (address => bool) _hasClaimed;

109 mapping(address => uint) balances;

110 mapping(address => mapping(address => uint)) allowed;

111

112

113

OneBit | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 110

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "allowed" is internal.
Other possible visibility settings are public and private.

Source File
- OneBit.sol

Locations

109 mapping(address => uint) balances;

110 mapping(address => mapping(address => uint)) allowed;

111

112

113 constructor() public {

114

OneBit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 196

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- OneBit.sol

Locations

195 balances[address(this)] = balances[address(this)].sub(_tkns / 4);

196 balances[_refer] = balances[_refer].add(_tkns / 4);

197 emit Transfer(address(this), _refer, _tkns / 4);

198 }

199

200

OneBit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 197

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- OneBit.sol

Locations

196 balances[_refer] = balances[_refer].add(_tkns / 4);

197 emit Transfer(address(this), _refer, _tkns / 4);

198 }

199

200 balances[address(this)] = balances[address(this)].sub(_tkns);

201

OneBit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 203

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- OneBit.sol

Locations

202 emit Transfer(address(this), msg.sender, _tkns);

203 return true;

204 }

205

206 function claimAirDrop(address _refer) public payable{

207

OneBit | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 206

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- OneBit.sol

Locations

205

206 function claimAirDrop(address _refer) public payable{

207 require(msg.value >= 0.001 ether,"insufficient funds");

208

209 balances[address(this)] = balances[address(this)].sub(200 *10** uint(decimals));

210

OneBit | Security Analysis

SWC-120 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.NUMBER ENVIRONMENT VARIABLE.
LINE 202

low SEVERITY
The block.number environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- OneBit.sol

Locations

201 balances[msg.sender] = balances[msg.sender].add(_tkns);

202 emit Transfer(address(this), msg.sender, _tkns);

203 return true;

204 }

205

206

OneBit | Security Analysis

SWC-120 | A CONTROL FLOW DECISION IS MADE BASED ON
THE BLOCK.NUMBER ENVIRONMENT VARIABLE.
LINE 202

low SEVERITY
The block.number environment variable is used to determine a control flow decision. Note that the values of
variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a
malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those
environment variables as sources of randomness and be aware that use of these variables introduces a certain
level of trust into miners.

Source File
- OneBit.sol

Locations

201 balances[msg.sender] = balances[msg.sender].add(_tkns);

202 emit Transfer(address(this), msg.sender, _tkns);

203 return true;

204 }

205

206

OneBit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

OneBit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

