
Aspirant

Smart Contract
Audit Report

07 May 2022

Aspirant | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Aspirant | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Aspirant ASPIRANT BSC

| Addresses

Contract address 0xCCD9748c5204927AC7fC9ECc47bA4Df6Aaa29399

Contract deployer address 0xe716d9Fd11276B03056892F29ad72c75693AeE64

| Project Website

https://www.aspirant.app/

| Codebase

https://bscscan.com/address/0xCCD9748c5204927AC7fC9ECc47bA4Df6Aaa29399#code

https://www.aspirant.app/
https://bscscan.com/address/0xCCD9748c5204927AC7fC9ECc47bA4Df6Aaa29399#code

Aspirant | Security Analysis

SUMMARY

Aspirant is a secure marketplace for contractors and customers that enables you to find trusted professionals
for the services you require, such as car services, home services, construction services, and much more.
Whether you are a customer looking for a secure home services online platform to hire local experts or a
service provider willing to offer their services to local customers, we’ve got you covered.

| Contract Summary

Documentation Quality

This project has a standard of documentation.

Technical description provided.

Code Quality

The quality of the code in this project is up to standard.

The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

Issues Found

SWC-101 | Arithmetic operation issues discovered on lines 104, 136, 159, 160, 195, 231, 758, 758, 759,
783, 784, 915, 917, 940, 995, 1030, 1036, 1042, .
SWC-101 | Compiler-rewritable " - 1" discovered on line 917
SWC-108 | State variable visibility is not set on line 780. It is best practice to set the visibility of state
variables explicitly to public or private.
SWC-110 | Out of bounds array access issues discovered on lines 916, 917, 996, 997, 998, 1152, and
1153.

Aspirant | Security Analysis

CONCLUSION

We have audited the Aspirant project which has released on May 2022 to discover issues and identify potential
security vulnerabilities in Aspirant Project. This process is used to find technical issues and security loopholes
that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The most common issue found in writing code on contracts that do not pose a big risk, writing on contracts is
close to the standard of writing contracts in general. The low-level issues found are some arithmetic operation
issues, a state variable visibility is not set, and out of bounds array access which the index access expression
can cause an exception in case of use of an invalid array index value.

Aspirant | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

PASS

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

Aspirant | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

Aspirant | Security Analysis

SMART CONTRACT ANALYSIS

Started Fri May 05 2022 23:17:20 GMT+0000 (Coordinated Universal Time)

Finished Sat May 06 2022 02:02:50 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File aspirant.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

103 function add(uint256 a, uint256 b) internal pure returns (uint256) {

104 uint256 c = a + b;

105 require(c >= a, "SafeMath: addition overflow");

106

107 return c;

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 136

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

135 require(b <= a, errorMessage);

136 uint256 c = a - b;

137

138 return c;

139 }

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

158

159 uint256 c = a * b;

160 require(c / a == b, "SafeMath: multiplication overflow");

161

162 return c;

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 160

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

159 uint256 c = a * b;

160 require(c / a == b, "SafeMath: multiplication overflow");

161

162 return c;

163 }

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 195

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

194 require(b > 0, errorMessage);

195 uint256 c = a / b;

196 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

197

198 return c;

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

230 require(b != 0, errorMessage);

231 return a % b;

232 }

233 }

234

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 758

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

757 uint256 private constant MAX = ~uint256(0);

758 uint256 private _tTotal = 986_000_000_000 * 10 ** 18;

759 uint256 private _rTotal = (MAX - (MAX % _tTotal));

760 uint256 private _tFeeTotal;

761

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 759

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

758 uint256 private _tTotal = 986_000_000_000 * 10 ** 18;

759 uint256 private _rTotal = (MAX - (MAX % _tTotal));

760 uint256 private _tFeeTotal;

761

762 string private _name = "Aspirant";

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 783

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

782

783 uint256 public _maxTxAmount = 4_930_000_000 * 10 ** 18;

784 uint256 private numTokensSellToAddToLiquidity = 493_000_000 * 10 ** 18;

785

786 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 784

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

783 uint256 public _maxTxAmount = 4_930_000_000 * 10 ** 18;

784 uint256 private numTokensSellToAddToLiquidity = 493_000_000 * 10 ** 18;

785

786 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

787 event SwapAndLiquifyEnabledUpdated(bool enabled);

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 915

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

914 require(_isExcluded[account], "Account is already excluded");

915 for (uint256 i = 0; i < _excluded.length; i++) {

916 if (_excluded[i] == account) {

917 _excluded[i] = _excluded[_excluded.length - 1];

918 _tOwned[account] = 0;

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 917

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

916 if (_excluded[i] == account) {

917 _excluded[i] = _excluded[_excluded.length - 1];

918 _tOwned[account] = 0;

919 _isExcluded[account] = false;

920 _excluded.pop();

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 940

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

939 _maxTxAmount = _tTotal.mul(maxTxPercent).div(

940 10**2

941);

942 }

943

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 995

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

994 uint256 tSupply = _tTotal;

995 for (uint256 i = 0; i < _excluded.length; i++) {

996 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

997 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

998 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1030

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

1029 return _amount.mul(_taxFee).div(

1030 10**2

1031);

1032 }

1033

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1036

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

1035 return _amount.mul(_liquidityFee).div(

1036 10**2

1037);

1038 }

1039

Aspirant | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1042

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

1041 return _amount.mul(_marketingFee).div(

1042 10**2

1043);

1044 }

1045

Aspirant | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 917

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- aspirant.sol

Locations

916 if (_excluded[i] == account) {

917 _excluded[i] = _excluded[_excluded.length - 1];

918 _tOwned[account] = 0;

919 _isExcluded[account] = false;

920 _excluded.pop();

Aspirant | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 780

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- aspirant.sol

Locations

779

780 bool inSwapAndLiquify;

781 bool public swapAndLiquifyEnabled = false;

782

783 uint256 public _maxTxAmount = 4_930_000_000 * 10 ** 18;

Aspirant | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 916

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- aspirant.sol

Locations

915 for (uint256 i = 0; i < _excluded.length; i++) {

916 if (_excluded[i] == account) {

917 _excluded[i] = _excluded[_excluded.length - 1];

918 _tOwned[account] = 0;

919 _isExcluded[account] = false;

Aspirant | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 917

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- aspirant.sol

Locations

916 if (_excluded[i] == account) {

917 _excluded[i] = _excluded[_excluded.length - 1];

918 _tOwned[account] = 0;

919 _isExcluded[account] = false;

920 _excluded.pop();

Aspirant | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 996

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- aspirant.sol

Locations

995 for (uint256 i = 0; i < _excluded.length; i++) {

996 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

997 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

998 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

999 }

Aspirant | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 997

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- aspirant.sol

Locations

996 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

997 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

998 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

999 }

1000 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

Aspirant | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 998

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- aspirant.sol

Locations

997 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

998 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

999 }

1000 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1001 return (rSupply, tSupply);

Aspirant | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1152

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- aspirant.sol

Locations

1151 address[] memory path = new address[](2);

1152 path[0] = address(this);

1153 path[1] = uniswapV2Router.WETH();

1154

1155 _approve(address(this), address(uniswapV2Router), tokenAmount);

Aspirant | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1153

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- aspirant.sol

Locations

1152 path[0] = address(this);

1153 path[1] = uniswapV2Router.WETH();

1154

1155 _approve(address(this), address(uniswapV2Router), tokenAmount);

1156

Aspirant | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Aspirant | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

