
BitANT

Smart Contract
Audit Report

06 Oct 2022

BitANT | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

BitANT | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

BitANT BitANT Ethereum

| Addresses

Contract address 0x15ee120fd69bec86c1d38502299af7366a41d1a6

Contract deployer address 0x15Ee120fD69BEc86C1d38502299af7366a41D1a6

| Project Website

https://bitbtc.money/

| Codebase

https://etherscan.io/address/0x15ee120fd69bec86c1d38502299af7366a41d1a6#code

https://bitbtc.money/
https://etherscan.io/address/0x15ee120fd69bec86c1d38502299af7366a41d1a6#code

BitANT | Security Analysis

SUMMARY

The BitBTC Protocol is to solve the problems of the high price of BTC and slow transfer speed, the BitBTC
Protocol proposes a solution to split BTC into BitBTC on the Ethereum through smart contracts, that is,1BTC =
1 million BitBTC.BitBTC has faster transfer speed, lower transfer fees, is more suitable for micropayment, more
energy saving, and more convenient participation in DeFi. BitBTC makes BTC simpler to buy everything. All
exchange fees between BTC and BitBTC are used to repurchase and burn BitANT.

| Contract Summary

Documentation Quality

BitANT provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by BitANT with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 988, 1007, 1029, 1062, 1064, 1085, 1086, 1111, 1113, 1226, 1773, 1781, 1902, 1902, 1913, 1913,
1913, 2224, 2274, 2278, 2390, 2393, 2394, 2401, 2405, 2528, 2528, 2529, 2529, 2529, 1781, 2224, 2278,
2390, 2393 and 2394.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 2202, 2224, 2271, 2278, 2390, 2393 and 2394.
SWC-120 | It is recommended to use external sources of randomness via oracles on lines 2235, 2248,
2393 and 2396.

BitANT | Security Analysis

CONCLUSION

We have audited the BitANT project released on October 2022 to discover issues and identify potential security
vulnerabilities in BitANT Project. This process is used to find technical issues and security loopholes which
might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the BitANT smart contract code do not pose a considerable risk. The writing of the
contract is close to the standard of writing contracts in general. The low-risk issues found are some arithmetic
operation issues, a state variable visibility is not set, weak sources of randomness, and out-of-bounds array
access which the index access expression can cause an exception in case of the use of an invalid array index
value. We recommend to don't using any of those environment variables as sources of randomness and being
aware that the use of these variables introduces a certain level of trust in miners.

BitANT | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

BitANT | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

ISSUE
FOUND

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

BitANT | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

BitANT | Security Analysis

SMART CONTRACT ANALYSIS

Started Wednesday Oct 05 2022 07:59:22 GMT+0000 (Coordinated Universal Time)

Finished Thursday Oct 06 2022 17:25:27 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File BitANT.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+=" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

SWC-120
POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE OF
RANDOMNESS.

low acknowledged

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 988

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

987 unchecked {

988 _approve(sender, _msgSender(), currentAllowance - amount);

989 }

990

991 return true;

992

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1007

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1006 function increaseAllowance(address spender, uint256 addedValue) public virtual

returns (bool) {

1007 _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);

1008 return true;

1009 }

1010

1011

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1029

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1028 unchecked {

1029 _approve(_msgSender(), spender, currentAllowance - subtractedValue);

1030 }

1031

1032 return true;

1033

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1062

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1061 unchecked {

1062 _balances[sender] = senderBalance - amount;

1063 }

1064 _balances[recipient] += amount;

1065

1066

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1064

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1063 }

1064 _balances[recipient] += amount;

1065

1066 emit Transfer(sender, recipient, amount);

1067

1068

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1085

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1084

1085 _totalSupply += amount;

1086 _balances[account] += amount;

1087 emit Transfer(address(0), account, amount);

1088

1089

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1086

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1085 _totalSupply += amount;

1086 _balances[account] += amount;

1087 emit Transfer(address(0), account, amount);

1088

1089 _afterTokenTransfer(address(0), account, amount);

1090

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1111

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1110 unchecked {

1111 _balances[account] = accountBalance - amount;

1112 }

1113 _totalSupply -= amount;

1114

1115

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-=" DISCOVERED
LINE 1113

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1112 }

1113 _totalSupply -= amount;

1114

1115 emit Transfer(account, address(0), amount);

1116

1117

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1226

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1225 unchecked {

1226 _approve(account, _msgSender(), currentAllowance - amount);

1227 }

1228 _burn(account, amount);

1229 }

1230

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+=" DISCOVERED
LINE 1773

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1772 unchecked {

1773 counter._value += 1;

1774 }

1775 }

1776

1777

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1780 unchecked {

1781 counter._value = value - 1;

1782 }

1783 }

1784

1785

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1902

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1901 // (a + b) / 2 can overflow.

1902 return (a & b) + (a ^ b) / 2;

1903 }

1904

1905 /**

1906

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1902

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1901 // (a + b) / 2 can overflow.

1902 return (a & b) + (a ^ b) / 2;

1903 }

1904

1905 /**

1906

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 1913

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1912 // (a + b - 1) / b can overflow on addition, so we distribute.

1913 return a / b + (a % b == 0 ? 0 : 1);

1914 }

1915 }

1916

1917

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 1913

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1912 // (a + b - 1) / b can overflow on addition, so we distribute.

1913 return a / b + (a % b == 0 ? 0 : 1);

1914 }

1915 }

1916

1917

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1913

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1912 // (a + b - 1) / b can overflow on addition, so we distribute.

1913 return a / b + (a % b == 0 ? 0 : 1);

1914 }

1915 }

1916

1917

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2224

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2223 uint256 pos = _checkpoints[account].length;

2224 return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;

2225 }

2226

2227 /**

2228

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2274

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2273 } else {

2274 low = mid + 1;

2275 }

2276 }

2277

2278

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2278

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2277

2278 return high == 0 ? 0 : ckpts[high - 1].votes;

2279 }

2280

2281 /**

2282

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2390

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2389 uint256 pos = ckpts.length;

2390 oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;

2391 newWeight = op(oldWeight, delta);

2392

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2393

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2392

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394 ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2394

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394 ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397 }

2398

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 2401

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2400 function _add(uint256 a, uint256 b) private pure returns (uint256) {

2401 return a + b;

2402 }

2403

2404 function _subtract(uint256 a, uint256 b) private pure returns (uint256) {

2405

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2405

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2404 function _subtract(uint256 a, uint256 b) private pure returns (uint256) {

2405 return a - b;

2406 }

2407 uint256[47] private __gap;

2408 }

2409

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2528

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2527 } else {

2528 super._transfer(sender, _feeCollector, amount * _fee / FEE_RATIO);

2529 super._transfer(sender, recipient, amount * (FEE_RATIO - _fee) / FEE_RATIO);

2530 }

2531 }

2532

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2528

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2527 } else {

2528 super._transfer(sender, _feeCollector, amount * _fee / FEE_RATIO);

2529 super._transfer(sender, recipient, amount * (FEE_RATIO - _fee) / FEE_RATIO);

2530 }

2531 }

2532

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 2529

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2528 super._transfer(sender, _feeCollector, amount * _fee / FEE_RATIO);

2529 super._transfer(sender, recipient, amount * (FEE_RATIO - _fee) / FEE_RATIO);

2530 }

2531 }

2532

2533

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 2529

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2528 super._transfer(sender, _feeCollector, amount * _fee / FEE_RATIO);

2529 super._transfer(sender, recipient, amount * (FEE_RATIO - _fee) / FEE_RATIO);

2530 }

2531 }

2532

2533

BitANT | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 2529

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2528 super._transfer(sender, _feeCollector, amount * _fee / FEE_RATIO);

2529 super._transfer(sender, recipient, amount * (FEE_RATIO - _fee) / FEE_RATIO);

2530 }

2531 }

2532

2533

BitANT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1781

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

1780 unchecked {

1781 counter._value = value - 1;

1782 }

1783 }

1784

1785

BitANT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2224

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2223 uint256 pos = _checkpoints[account].length;

2224 return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;

2225 }

2226

2227 /**

2228

BitANT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2278

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2277

2278 return high == 0 ? 0 : ckpts[high - 1].votes;

2279 }

2280

2281 /**

2282

BitANT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2390

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2389 uint256 pos = ckpts.length;

2390 oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;

2391 newWeight = op(oldWeight, delta);

2392

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394

BitANT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2393

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2392

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394 ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397

BitANT | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 2394

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- BitANT.sol

Locations

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394 ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397 }

2398

BitANT | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- BitANT.sol

Locations

4

5 pragma solidity ^0.8.0;

6

7 // SPDX-License-Identifier: MIT

8

9

BitANT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2202

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitANT.sol

Locations

2201 function checkpoints(address account, uint32 pos) public view virtual returns

(Checkpoint memory) {

2202 return _checkpoints[account][pos];

2203 }

2204

2205 /**

2206

BitANT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2224

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitANT.sol

Locations

2223 uint256 pos = _checkpoints[account].length;

2224 return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;

2225 }

2226

2227 /**

2228

BitANT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2271

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitANT.sol

Locations

2270 uint256 mid = MathUpgradeable.average(low, high);

2271 if (ckpts[mid].fromBlock > blockNumber) {

2272 high = mid;

2273 } else {

2274 low = mid + 1;

2275

BitANT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2278

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitANT.sol

Locations

2277

2278 return high == 0 ? 0 : ckpts[high - 1].votes;

2279 }

2280

2281 /**

2282

BitANT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2390

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitANT.sol

Locations

2389 uint256 pos = ckpts.length;

2390 oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;

2391 newWeight = op(oldWeight, delta);

2392

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394

BitANT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2393

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitANT.sol

Locations

2392

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394 ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397

BitANT | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 2394

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- BitANT.sol

Locations

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394 ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397 }

2398

BitANT | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 2235

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BitANT.sol

Locations

2234 function getPastVotes(address account, uint256 blockNumber) public view returns

(uint256) {

2235 require(blockNumber < block.number, "ERC20Votes: block not yet mined");

2236 return _checkpointsLookup(_checkpoints[account], blockNumber);

2237 }

2238

2239

BitANT | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 2248

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BitANT.sol

Locations

2247 function getPastTotalSupply(uint256 blockNumber) public view returns (uint256) {

2248 require(blockNumber < block.number, "ERC20Votes: block not yet mined");

2249 return _checkpointsLookup(_totalSupplyCheckpoints, blockNumber);

2250 }

2251

2252

BitANT | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 2393

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BitANT.sol

Locations

2392

2393 if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {

2394 ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397

BitANT | Security Analysis

SWC-120 | POTENTIAL USE OF "BLOCK.NUMBER" AS SOURCE
OF RANDOMNESS.
LINE 2396

low SEVERITY
The environment variable "block.number" looks like it might be used as a source of randomness. Note that the
values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be
manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use
any of those environment variables as sources of randomness and be aware that use of these variables
introduces a certain level of trust into miners.

Source File
- BitANT.sol

Locations

2395 } else {

2396 ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number),

votes: SafeCastUpgradeable.toUint224(newWeight)}));

2397 }

2398 }

2399

2400

BitANT | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

BitANT | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

