
Artificial Intelligence

Smart Contract
Audit Report

18 Oct 2021

Artificial Intelligence | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Artificial Intelligence | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Artificial Intelligence AI Binance Smart Chain

| Addresses

Contract address 0x4c403b1879aa6a79ba9c599a393ccc5d9fd2e788

Contract deployer address 0xe1F0859D990b2BfcfAfbD0f48A8f30bCA15f86DC

| Project Website

https://artificialintelligence.finance/

| Codebase

https://bscscan.com/address/0x4c403b1879aa6a79ba9c599a393ccc5d9fd2e788#code

https://artificialintelligence.finance/
https://bscscan.com/address/0x4c403b1879aa6a79ba9c599a393ccc5d9fd2e788#code

Artificial Intelligence | Security Analysis

SUMMARY

The AI That Writes Code for You Think about artificial intelligence writing code for you and constantly learning.
Describe the software and features you want to encode. The AI will serve you the software with hundreds of
visual options in a few minutes. You won’t have to pay a hundred thousand dollars for custom software. The AI
will encode your software for just a couple of hundred dollars. You won’t have to wait months. The AI writes
code fast, securely, and without a mistake. More Details, More Perfect Results You can describe a hunter and
birds. You can tell the AI that if the hunter gets a more successful shoot, the level will be more complex.
Furthermore, you can define ad frequencies and placements with a simple interface. Select hundreds of
different hunter and bird images and assign them advanced movements and effects on AI advanced interface.
Tell how the birds will fall after being shot and all the other details. The AI will code all the details for you. If the
AI doesn’t find the code for your project, it will research and learn. Thus, AI will be more intelligent and more
advanced after each project.

| Contract Summary

Documentation Quality

Artificial Intelligence provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by Artificial Intelligence with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 708.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 104, 136, 159, 160, 195, 231, 450, 732, 732, 733, 733, 738, 738, 739, 739, 859, 861, 897, 897, 901,
901, 946, 970, 976 and 861.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 5.

SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 860, 861, 861, 947, 947, 948, 949, 1079 and 1080.

Artificial Intelligence | Security Analysis

CONCLUSION

We have audited the Artificial Intelligence project released on October 2021 to discover issues and identify
potential security vulnerabilities in Artificial Intelligence Project. This process is used to find technical issues
and security loopholes which might be found in the smart contract.

The security audit report provides satisfactory results with low-risk issues.

The issues found in the Artificial Intelligence smart contract code do not pose a considerable risk. The writing
of the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds
array access which the index access expression can cause an exception in case of the use of an invalid array
index value. The current pragma Solidity directive is ""^0.6.12"". Specifying a fixed compiler version is
recommended to ensure that the bytecode produced does not vary between builds. This is especially important
if you rely on bytecode-level verification of the code. It is best practice to set the visibility of state variables
explicitly. The default visibility for "inSwapAndLiquify" is internal. Other possible visibility settings are public
and private.

Artificial Intelligence | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Artificial Intelligence | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Artificial Intelligence | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Artificial Intelligence | Security Analysis

SMART CONTRACT ANALYSIS

Started Sunday Oct 17 2021 04:13:26 GMT+0000 (Coordinated Universal Time)

Finished Monday Oct 18 2021 06:11:36 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File CoinToken.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 104

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

103 function add(uint256 a, uint256 b) internal pure returns (uint256) {

104 uint256 c = a + b;

105 require(c >= a, "SafeMath: addition overflow");

106

107 return c;

108

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 136

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

135 require(b <= a, errorMessage);

136 uint256 c = a - b;

137

138 return c;

139 }

140

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 159

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

158

159 uint256 c = a * b;

160 require(c / a == b, "SafeMath: multiplication overflow");

161

162 return c;

163

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 160

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

159 uint256 c = a * b;

160 require(c / a == b, "SafeMath: multiplication overflow");

161

162 return c;

163 }

164

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 195

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

194 require(b > 0, errorMessage);

195 uint256 c = a / b;

196 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

197

198 return c;

199

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 231

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

230 require(b != 0, errorMessage);

231 return a % b;

232 }

233 }

234

235

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

449 _owner = address(0);

450 _lockTime = now + time;

451 emit OwnershipTransferred(_owner, address(0));

452 }

453

454

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 732

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

731 _decimals = _DECIMALS;

732 _tTotal = _supply * 10 ** _decimals;

733 _rTotal = (MAX - (MAX % _tTotal));

734 _taxFee = _txFee;

735 _liquidityFee = _lpFee;

736

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 732

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

731 _decimals = _DECIMALS;

732 _tTotal = _supply * 10 ** _decimals;

733 _rTotal = (MAX - (MAX % _tTotal));

734 _taxFee = _txFee;

735 _liquidityFee = _lpFee;

736

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 733

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

732 _tTotal = _supply * 10 ** _decimals;

733 _rTotal = (MAX - (MAX % _tTotal));

734 _taxFee = _txFee;

735 _liquidityFee = _lpFee;

736 _previousTaxFee = _txFee;

737

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 733

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

732 _tTotal = _supply * 10 ** _decimals;

733 _rTotal = (MAX - (MAX % _tTotal));

734 _taxFee = _txFee;

735 _liquidityFee = _lpFee;

736 _previousTaxFee = _txFee;

737

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 738

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

737 _previousLiquidityFee = _lpFee;

738 _maxTxAmount = _MAXAMOUNT * 10 ** _decimals;

739 numTokensSellToAddToLiquidity = SELLMAXAMOUNT * 10 ** _decimals;

740

741

742

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 738

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

737 _previousLiquidityFee = _lpFee;

738 _maxTxAmount = _MAXAMOUNT * 10 ** _decimals;

739 numTokensSellToAddToLiquidity = SELLMAXAMOUNT * 10 ** _decimals;

740

741

742

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 739

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

738 _maxTxAmount = _MAXAMOUNT * 10 ** _decimals;

739 numTokensSellToAddToLiquidity = SELLMAXAMOUNT * 10 ** _decimals;

740

741

742 _rOwned[tokenOwner] = _rTotal;

743

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 739

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

738 _maxTxAmount = _MAXAMOUNT * 10 ** _decimals;

739 numTokensSellToAddToLiquidity = SELLMAXAMOUNT * 10 ** _decimals;

740

741

742 _rOwned[tokenOwner] = _rTotal;

743

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 859

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

858 require(_isExcluded[account], "Account is already excluded");

859 for (uint256 i = 0; i < _excluded.length; i++) {

860 if (_excluded[i] == account) {

861 _excluded[i] = _excluded[_excluded.length - 1];

862 _tOwned[account] = 0;

863

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 861

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

860 if (_excluded[i] == account) {

861 _excluded[i] = _excluded[_excluded.length - 1];

862 _tOwned[account] = 0;

863 _isExcluded[account] = false;

864 _excluded.pop();

865

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 897

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

896 function setNumTokensSellToAddToLiquidity(uint256 swapNumber) public onlyOwner {

897 numTokensSellToAddToLiquidity = swapNumber * 10 ** _decimals;

898 }

899

900 function setMaxTxPercent(uint256 maxTxPercent) public onlyOwner {

901

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 897

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

896 function setNumTokensSellToAddToLiquidity(uint256 swapNumber) public onlyOwner {

897 numTokensSellToAddToLiquidity = swapNumber * 10 ** _decimals;

898 }

899

900 function setMaxTxPercent(uint256 maxTxPercent) public onlyOwner {

901

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 901

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

900 function setMaxTxPercent(uint256 maxTxPercent) public onlyOwner {

901 _maxTxAmount = maxTxPercent * 10 ** _decimals;

902 }

903

904 function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {

905

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 901

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

900 function setMaxTxPercent(uint256 maxTxPercent) public onlyOwner {

901 _maxTxAmount = maxTxPercent * 10 ** _decimals;

902 }

903

904 function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {

905

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 946

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

945 uint256 tSupply = _tTotal;

946 for (uint256 i = 0; i < _excluded.length; i++) {

947 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

948 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

949 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

950

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 970

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

969 return _amount.mul(_taxFee).div(

970 10**2

971);

972 }

973

974

Artificial Intelligence | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 976

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

975 return _amount.mul(_liquidityFee).div(

976 10**2

977);

978 }

979

980

Artificial Intelligence | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 861

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- CoinToken.sol

Locations

860 if (_excluded[i] == account) {

861 _excluded[i] = _excluded[_excluded.length - 1];

862 _tOwned[account] = 0;

863 _isExcluded[account] = false;

864 _excluded.pop();

865

Artificial Intelligence | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 5

low SEVERITY
The current pragma Solidity directive is ""^0.6.12"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- CoinToken.sol

Locations

4

5 pragma solidity ^0.6.12;

6 // SPDX-License-Identifier: Unlicensed

7 interface IERC20 {

8

9

Artificial Intelligence | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 708

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- CoinToken.sol

Locations

707

708 bool inSwapAndLiquify;

709 bool public swapAndLiquifyEnabled = true;

710

711 uint256 public _maxTxAmount;

712

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 860

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

859 for (uint256 i = 0; i < _excluded.length; i++) {

860 if (_excluded[i] == account) {

861 _excluded[i] = _excluded[_excluded.length - 1];

862 _tOwned[account] = 0;

863 _isExcluded[account] = false;

864

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 861

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

860 if (_excluded[i] == account) {

861 _excluded[i] = _excluded[_excluded.length - 1];

862 _tOwned[account] = 0;

863 _isExcluded[account] = false;

864 _excluded.pop();

865

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 861

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

860 if (_excluded[i] == account) {

861 _excluded[i] = _excluded[_excluded.length - 1];

862 _tOwned[account] = 0;

863 _isExcluded[account] = false;

864 _excluded.pop();

865

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 947

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

946 for (uint256 i = 0; i < _excluded.length; i++) {

947 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

948 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

949 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

950 }

951

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 947

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

946 for (uint256 i = 0; i < _excluded.length; i++) {

947 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

948 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

949 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

950 }

951

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 948

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

947 if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return

(_rTotal, _tTotal);

948 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

949 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

950 }

951 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

952

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 949

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

948 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

949 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

950 }

951 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

952 return (rSupply, tSupply);

953

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1079

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1078 address[] memory path = new address[](2);

1079 path[0] = address(this);

1080 path[1] = uniswapV2Router.WETH();

1081

1082 _approve(address(this), address(uniswapV2Router), tokenAmount);

1083

Artificial Intelligence | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1080

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- CoinToken.sol

Locations

1079 path[0] = address(this);

1080 path[1] = uniswapV2Router.WETH();

1081

1082 _approve(address(this), address(uniswapV2Router), tokenAmount);

1083

1084

Artificial Intelligence | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Artificial Intelligence | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

