
EndlessWebWorlds

Smart Contract
Audit Report

05 Nov 2022

EndlessWebWorlds | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

EndlessWebWorlds | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

EndlessWebWorlds EWW Ethereum

| Addresses

Contract address 0x3d38F87BeF0123f5764635C7E11048027E0721a8

Contract deployer address 0xD69EBCcD52F86B2Aa2134D888d821688858a1400

| Project Website

https://endless-web-worlds.com/

| Codebase

https://etherscan.io/address/0x3d38F87BeF0123f5764635C7E11048027E0721a8#code

https://endless-web-worlds.com/
https://etherscan.io/address/0x3d38F87BeF0123f5764635C7E11048027E0721a8#code

EndlessWebWorlds | Security Analysis

SUMMARY

Enter a new way to collaborate and explore. EWW is built on an universe of tiny 2.5D online worlds that anyone
can create individually and for free. We are creating a platform where people can easily and amusingly learn
about projects or other people. Where teams/clans/holders can meet and have fun with various tool sets that
we offer.

| Contract Summary

Documentation Quality

EndlessWebWorlds provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by EndlessWebWorlds with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 44, 215, 216, 331, 332, 337,
373, 378, 379 and 380.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 41, 66, 81,
130, 176, 209, 327, 363 and 581.

EndlessWebWorlds | Security Analysis

CONCLUSION

We have audited the EndlessWebWorlds project released on November 2022 to discover issues and identify
potential security vulnerabilities in EndlessWebWorlds Project. This process is used to find technical issues
and security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the EndlessWebWorlds smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a state variable visibility is not set. It is recommended to
specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
especially important if you rely on bytecode-level verification of the code also it is best practice to set the
visibility of state variables explicitly. The default visibility for "_owner" is internal. Other possible visibility
settings are public and private.

EndlessWebWorlds | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

EndlessWebWorlds | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

EndlessWebWorlds | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

EndlessWebWorlds | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Nov 04 2022 06:15:24 GMT+0000 (Coordinated Universal Time)

Finished Saturday Nov 05 2022 08:44:37 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File EndlessWebWorlds.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 41

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

40

41 pragma solidity ^0.8.7;

42

43 abstract contract Ownable {

44 address _owner;

45

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 66

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

65

66 pragma solidity ^0.8.7;

67

68 interface IUniswapV2Factory {

69 function createPair(address tokenA, address tokenB)

70

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 81

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

80

81 pragma solidity ^0.8.7;

82

83 interface IUniswapV2Router02 {

84 function swapExactTokensForETH(

85

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 130

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

129

130 pragma solidity ^0.8.7;

131

132

133 contract DoubleSwapped {

134

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 176

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

175

176 pragma solidity ^0.8.7;

177

178 interface IERC20 {

179 function totalSupply() external view returns (uint256);

180

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 209

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

208

209 pragma solidity ^0.8.7;

210

211

212 abstract contract ERC20 is IERC20 {

213

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 327

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

326

327 pragma solidity ^0.8.7;

328

329

330 abstract contract MaxWalletDynamic {

331

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 363

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

362

363 pragma solidity ^0.8.7;

364

365 abstract contract TradableErc20 is ERC20, DoubleSwapped, Ownable, Withdrawable {

366 IUniswapV2Router02 internal constant _uniswapV2Router =

367

EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 581

low SEVERITY
The current pragma Solidity directive is ""^0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

580

581 pragma solidity ^0.8.7;

582

583

584 struct AirdropData {

585

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 44

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_owner" is internal.
Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

43 abstract contract Ownable {

44 address _owner;

45

46 modifier onlyOwner() {

47 require(msg.sender == _owner);

48

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 215

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_name" is internal.
Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

214 uint8 constant _decimals = 9;

215 string _name;

216 string _symbol;

217 mapping(address => uint256) internal _balances;

218 mapping(address => mapping(address => uint256)) internal _allowances;

219

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 216

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_symbol" is internal.
Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

215 string _name;

216 string _symbol;

217 mapping(address => uint256) internal _balances;

218 mapping(address => mapping(address => uint256)) internal _allowances;

219 uint256 internal constant INFINITY_ALLOWANCE = 2**256 - 1;

220

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 331

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "startMaxWallet" is
internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

330 abstract contract MaxWalletDynamic {

331 uint256 startMaxWallet;

332 uint256 startTime; // last increment time

333 uint256 constant startMaxBuyPercentil = 5; // maximum buy on start 1000=100%

334 uint256 constant maxBuyIncrementMinutesTimer = 2; // increment maxbuy minutes

335

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 332

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "startTime" is internal.
Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

331 uint256 startMaxWallet;

332 uint256 startTime; // last increment time

333 uint256 constant startMaxBuyPercentil = 5; // maximum buy on start 1000=100%

334 uint256 constant maxBuyIncrementMinutesTimer = 2; // increment maxbuy minutes

335 uint256 constant maxBuyIncrementPercentil = 3; // increment maxbyu percentil

1000=100%

336

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 337

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"maxBuyIncrementValue" is internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

336 uint256 constant maxIncrements = 1000; // maximum time incrementations

337 uint256 maxBuyIncrementValue; // value for increment maxBuy

338

339 function startMaxWalletDynamic(uint256 totalSupply) internal {

340 startTime = block.timestamp;

341

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 373

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_isExcludedFromFee"
is internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

372 address public extraAddress;

373 mapping(address => bool) _isExcludedFromFee;

374 uint256 public buyFeePpm = 2; // fee in 1/1000

375 uint256 public sellFeePpm = 2; // fee in 1/1000

376 uint256 public thisShare = 410; // in 1/1000

377

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 378

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "maxWalletStart" is
internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

377 uint256 public extraShare = 0; // in 1/1000

378 uint256 maxWalletStart = 5e16;

379 uint256 addMaxWalletPerMinute = 5e16;

380 uint256 tradingStartTime;

381

382

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 379

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for
"addMaxWalletPerMinute" is internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

378 uint256 maxWalletStart = 5e16;

379 uint256 addMaxWalletPerMinute = 5e16;

380 uint256 tradingStartTime;

381

382 constructor(string memory name_, string memory symbol_)

383

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 380

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "tradingStartTime" is
internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

379 uint256 addMaxWalletPerMinute = 5e16;

380 uint256 tradingStartTime;

381

382 constructor(string memory name_, string memory symbol_)

383 ERC20(name_, symbol_)

384

EndlessWebWorlds | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

EndlessWebWorlds | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

