EndlessWebWorlds

Smart Contract
Audit Report

@ SYSFIXED 05 Nov 2022



£ SYSFIXED

TABLE OF CONTENTS

| Audited Details

- Audited Project
- Blockchain
- Addresses

- Project Website
- Codebase

| Summary

- Contract Summary
- Audit Findings Summary
- Vulnerabilities Summary

| Conclusion

| Audit Results

| Smart Contract Analysis

- Detected Vulnerabilities

| Disclaimer

| About Us

EndlessWebWorlds | Security Analysis



@ SYSFIXED EndlessWebWorlds | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain
EndlessWebWorlds EWW Ethereum

| Addresses
Contract address 0x3d38F87BeF0123f5764635C7E11048027E0721a8
Contract deployer address 0xD69EBCcD52F86B2Aa2134D888d821688858a1400

| Project Website

https://endless-web-worlds.com/

| Codebase

https://etherscan.io/address/0x3d38F87BeF0123f5764635C7E11048027E0721a8#code



https://endless-web-worlds.com/
https://etherscan.io/address/0x3d38F87BeF0123f5764635C7E11048027E0721a8#code

@S\"SH}{ED EndlessWebWorlds | Security Analysis

SUMMARY

Enter a new way to collaborate and explore. EWW is built on an universe of tiny 2.5D online worlds that anyone
can create individually and for free. We are creating a platform where people can easily and amusingly learn
about projects or other people. Where teams/clans/holders can meet and have fun with various tool sets that
we offer.

| Contract Summary

Documentation Quality
EndlessWebWorlds provides a very good documentation with standard of solidity base code.
e The technical description is provided clearly and structured and also dont have any high risk issue.
Code Quality
The Overall quality of the basecode is standard.

e Standard solidity basecode and rules are already followed by EndlessWebWorlds with the discovery of
several low issues.

Test Coverage

Test coverage of the project is 100% ( Through Codebase )

| Audit Findings Summary

e SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 44, 215, 216, 331, 332, 337,
373,378,379 and 380.

¢ SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 41, 66, 81,
130, 176, 209, 327, 363 and 581.



@ SYSFIXED EndlessWebWorlds | Security Analysis

CONCLUSION

We have audited the EndlessWebWorlds project released on November 2022 to discover issues and identify
potential security vulnerabilities in EndlessWebWorlds Project. This process is used to find technical issues
and security loopholes which might be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the EndlessWebWorlds smart contract code do not pose a considerable risk. The writing of
the contract is close to the standard of writing contracts in general. The low-risk issues found are some
arithmetic operation issues, a floating pragma is set, a state variable visibility is not set. It is recommended to
specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
especially important if you rely on bytecode-level verification of the code also it is best practice to set the
visibility of state variables explicitly. The default visibility for "_owner" is internal. Other possible visibility
settings are public and private.



£ SYSFIXED

AUDIT RESULT

EndlessWebWorlds | Security Analysis

Untrusted Callee

addresses.

Article Category Description Result
Functions and state variables visibility should be
- SWC-100 . . - ISSUE
Default Visibility set explicitly. Visibility levels should be specified
SWC-108 . FOUND
consciously.
Integer Overflow If unchecked math is used, all math operations
SWC-101 PASS
and Underflow should be safe from overflows and underflows.
Outdated Compiler It is recommended to use a recent version of the
. SWC-102 L . PASS
Version Solidity compiler.
Contracts should be deployed with the same ISSUE
Floating Pragma SWC-103 compiler version and flags that they have been T
tested thoroughly.
Unchecked Call The return value of a message call should be
SWC-104 PASS
Return Value checked.
Unprotected Ether Due to missing or insufficient access controls,
. SWC-105 . i , PASS
Withdrawal malicious parties can withdraw from the contract.
SELFDESTRUCT The contract should not be self-destructible while it
. SWC-106 . PASS
Instruction has funds belonging to users.
Check effect interaction pattern should be followed
Reentrancy SWC-107 ) ) PASS
if the code performs recursive call.
Uninitialized Uninitialized local storage variables can point to
. SWC-109 i . PASS
Storage Pointer unexpected storage locations in the contract.
L SWC-110 Properly functioning code should never reach a
Assert Violation N PASS
SWC-123 failing assert statement.
Deprecated Solidity o )
. SWC-111 Deprecated built-in functions should never be used. PASS
Functions
Delegate call to Delegatecalls should only be allowed to trusted
SWC-112 PASS




£ SYSFIXED

DoS (Denial of
Service)

Race Conditions

Authorization
through tx.origin

Block values as a
proxy for time

Signature Unique
ID

Incorrect
Constructor Name

Shadowing State
Variable

Weak Sources of
Randomness

Write to Arbitrary
Storage Location

Incorrect
Inheritance Order

Insufficient Gas
Griefing

Arbitrary Jump
Function

SWC-113
SWC-128

SWC-114

SWC-115

SWC-116

SWC-117
SWC-121
SWC-122

SWC-118

SWC-119

SWC-120

SWC-124

SWC-125

SWC-126

SWC-127

EndlessWebWorlds | Security Analysis

Execution of the code should never be blocked by a specific
contract state unless required.

Race Conditions and Transactions Order Dependency
should not be possible.

tx.origin should not be used for authorization.

Block numbers should not be used for time calculations.

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

Constructors are special functions that are called only once
during the contract creation.

State variables should not be shadowed.

Random values should never be generated from Chain
Attributes or be predictable.

The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS



£ SYSFIXED

EndlessWebWorlds | Security Analysis

Typographical A typographical error can occur for example when the intent
SWC-129 ) o 4 PASS
Error of a defined operation is to sum a number to a variable.
. Malicious actors can use the Right-To-Left-Override unicode
Override control .
h ¢ SWC-130 character to force RTL text rendering and confuse users as PASS
character
to the real intent of a contract.
. SWC-131 Unused variables are allowed in Solidity and they do not pose
Unused variables ) o PASS
SWC-135 a direct security issue.
Unexpected Ether Contracts can behave erroneously when they strictly assume
SWC-132 . PASS
balance a specific Ether balance.
Hash Collisions Using abi.encodePacked() with multiple variable length
. SWC-133 . L Ey PASS
Variable arguments can, in certain situations, lead to a hash collision.
Hardcoded gas The transfer() and send() functions forward a fixed amount
SWC-134 PASS
amount of 2300 gas.
Unencrypted It is a common misconception that private type variables
SWC-136 PASS

Private Data

cannot be read.




@ SYSFIXED EndlessWebWorlds | Security Analysis

SMART CONTRACT ANALYSIS

Started Friday Nov 04 2022 06:15:24 GMT+0000 (Coordinated Universal Time)
Finished Saturday Nov 05 2022 08:44:37 GMT+0000 (Coordinated Universal Time)
Mode Standard

Main Source File EndlessWebWorlds.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-103 A FLOATING PRAGMA IS SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged




£ SYSFIXED

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged
SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 41

low SEVERITY

The current pragma Solidity directive is ""*0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations
40
41 pragma solidity ~0.8.7;
42

43 abstract contract Ownable {
44 address _owner;
45




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 66

low SEVERITY

The current pragma Solidity directive is ""*0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations
65
66 pragma solidity ~0.8.7;
67

68 interface | Uni swapV2Factory {
69 function createPair(address tokenA, address tokenB)
70




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 81

low SEVERITY

The current pragma Solidity directive is ""*0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations
80
81 pragma solidity ~0.8.7;
82

83 interface | Uni swapV2Rout er 02 {
84 function swapExact TokensFor ETH(
85




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 130

low SEVERITY

The current pragma Solidity directive is ""0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

129

130 pragma solidity ~0.8.7;
131

132

133 contract Doubl eSwapped {
134




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 176

low SEVERITY

The current pragma Solidity directive is ""*0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations
175
176 pragna solidity ~0.8.7;
177

178 interface | ERC20 {
179 function total Supply() external view returns (uint256);
180




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 209

low SEVERITY

The current pragma Solidity directive is ""0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

208

209 pragma solidity ~0.8.7;

210

211

212 abstract contract ERC20 is | ERC20 {
213




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 327

low SEVERITY

The current pragma Solidity directive is ""0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

326

327 pragna solidity ~0.8.7;

328

329

330 abstract contract MaxWal | et Dynam c {
331




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 363

low SEVERITY

The current pragma Solidity directive is ""*0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations
362
363 pragma solidity ~0.8.7;
364
365 abstract contract Tradabl eErc20 is ERC20, Doubl eSwapped, Ownabl e, Wt hdrawabl e {
366 I Uni swapV2Rout er 02 i nternal constant _uni swapV2Router =
367




@ SYSFIXED EndlessWebWorlds | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 581

low SEVERITY

The current pragma Solidity directive is ""0.8.7"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- EndlessWebWorlds.sol

Locations

580

581 pragma solidity ~0.8.7;
582

583

584 struct AirdropData {
585




@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 44

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "_owner" is internal.
Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

43 abstract contract Oawnable {
44 address _owner;

45
46 nmodi fier onlyOaer() {
47 requi re(nsg. sender == _owner);

48




@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 215

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "_name" is internal.
Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

214 uint8 constant _decinmals = 9;

215 string _nane;

216 string _synbol;

217 nmappi ng(address => ui nt 256) internal _bal ances;

218 mappi ng(addr ess => mappi ng(address => ui nt256)) internal _all owances;
219




@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 216

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "_symbol" is internal.
Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations
215 string _nane;
216 string _synbol;
217 nmappi ng(address => ui nt 256) internal _bal ances;
218 mappi ng(address => mappi ng(address => uint256)) internal _all owances;
219 ui nt 256 internal constant | NFIN TY_ALLOMNCE = 2**256 - 1,

220




£ SYSFIXED

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 331

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "startMaxWallet" is
internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

abstract contract MaxWal | et Dynam ¢ {

Locations
330
331  uint256
332  uint256
333  uint256
334 ui nt 256

335

start MaxWal | et ;

startTime; // last increment tine

constant startMaxBuyPercentil = 5; // maxi num buy on start 1000=100%
constant nmaxBuyl ncrenentM nutesTimer = 2; // increment maxbuy m nutes



£ SYSFIXED

EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 332

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "startTime" is internal.
Other possible visibility settings are public and private.

Source File

- EndlessWebWorlds.sol

Locations

331 ui nt 256
332 ui nt 256
333 ui nt 256
334 ui nt 256
335 ui nt 256
1000=100%
336

start MaxWal | et ;
startTinme; // last increnent tine

constant startMaxBuyPercentil = 5; // nmaxi num buy on start 1000=100%
constant maxBuyl ncrenent M nutesTiner = 2; // increment naxbuy m nutes
constant nmaxBuyl ncrenent Percentil = 3; // increnment naxbyu percentil



@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.

LINE 337

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for

"maxBuylncrementValue" is internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations
336 ui nt 256 constant maxlncrenents = 1000; // maximumtinme increnmentations
337 ui nt 256 maxBuyl ncrenent Val ue; // value for increnment maxBuy
338
339 function startMaxWal | et Dynam c(ui nt 256 total Supply) internal {
340 startTime = bl ock. ti mest anp;

341




@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 373

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "_isExcludedFromFee"
is internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

372 address public extraAddress;

373 nmappi ng(address => bool ) _i sExcl udedFr onfee;
374 ui nt 256 public buyFeePpm = 2; // fee in 1/1000
375 ui nt 256 public sell FeePpm = 2; // fee in 1/1000
376 ui nt 256 public thisShare = 410; // in 1/1000
377




@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 378

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "maxWalletStart" is
internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

377 ui nt 256 public extraShare = 0; // in 1/1000
378 ui nt 256 max\Wal l et Start = 5el6;

379 ui nt 256 addMax\Wal | et Per M nute = 5el6;

380 ui nt 256 tradi ngStartTi ne;

381

382




@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 379

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for
"addMaxWalletPerMinute" is internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

378 ui nt 256 max\Wall et Start = 5el6;

379 ui nt 256 addMax\Wal | et Per M nute = 5el6;

380 ui nt 256 tradi ngStartTi ne;

381

382 constructor(string nenory nane_, string menory synbol _)
383




@S\"SH}{ED EndlessWebWorlds | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 380

low SEVERITY

It is best practice to set the visibility of state variables explicitly. The default visibility for "tradingStartTime" is
internal. Other possible visibility settings are public and private.

Source File
- EndlessWebWorlds.sol

Locations

379 ui nt 256 addMaxWal | et Per M nute = 5el6;

380 ui nt 256 tradi ngStartTi ne;

381

382 constructor(string nmenory name_, string nmenory synbol )
383 ERC20( nane_, synbol _)

384




@S\"SH}{ED EndlessWebWorlds | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed's prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below - please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.



@S\"SH}{ED EndlessWebWorlds | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.



