
MetaRabbit

Smart Contract
Audit Report

17 Jan 2023

MetaRabbit | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

MetaRabbit | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

MetaRabbit METRC BSC

| Addresses

Contract address 0x3d0b1Bf4962b9ebFd494612A0CB1299b9809F397

Contract deployer address 0xB275D3513BbA405b01c8D6e9ef412440502A7f05

| Project Website

http://metarabbit.casino/

| Codebase

https://bscscan.com/address/0x3d0b1Bf4962b9ebFd494612A0CB1299b9809F397#code

http://metarabbit.casino/
https://bscscan.com/address/0x3d0b1Bf4962b9ebFd494612A0CB1299b9809F397#code

MetaRabbit | Security Analysis

SUMMARY

MetaRabbit Casino is an online casino platform specializing in cryptocurrencies. Our platform will host a
diverse selection of games, including slots, poker, blackjack, and more. We are positioned at the forefront of
the cryptocurrency gambling space, with instant BTC, BNB & USDT deposits/withdrawals. Test our casino
Dapp today, claim a free legendary early supporter NFT, and stand a chance to win $36K USDT!

| Contract Summary

Documentation Quality

This project has a standard of documentation.

Technical description provided.

Code Quality

The quality of the code in this project is up to standard.

The official Solidity style guide is followed.

Test Scope

Project test coverage is 100% (Via Codebase).

| Audit Findings Summary

Issues Found

SWC-103 | A floating pragma is set discovered on lines 10, 37, 115, 222, 307, 337, 728, and 767, the
Solidity directive pragma used changed from ""^0.8.0"" to ""^0.8.9"". It is recommended to specify a fixed
compiler version to ensure that the resulting bytecode does not vary between builds. This is especially
important if you rely on bytecode level code verification.

MetaRabbit | Security Analysis

CONCLUSION

We have audited the MetaRabbit project released on January 2023 to discover issues and identify potential
security vulnerabilities in MetaRabbit Project. This process is used to find technical issues and security
loopholes that find some common issues in the code.

The security audit report produced satisfactory results with low-risk issues.

The issue in this project is that a floating pragma is set, and the Solidity directive pragma is changed at another
line. Specifying a fixed compiler version is recommended to ensure that the resulting bytecode does not vary
between builds. This is especially important if you rely on bytecode level code verification

MetaRabbit | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Check-Effect
Interaction

SWC-107
Check-Effect-Interaction pattern should be followed
if the code performs ANY external call.

PASS

Assert Violation SWC-110
Properly functioning code should never reach a
failing assert statement.

PASS

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Caller

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order
Dependency should not be possible.

PASS

MetaRabbit | Security Analysis

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to inherit
contracts from more /general/ to more /specific/.

PASS

MetaRabbit | Security Analysis

SMART CONTRACT ANALYSIS

Started Mon Jan 16 2023 23:17:20 GMT+0000 (Coordinated Universal Time)

Finished Tue Jan 17 2023 02:14:19 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File MetaRabbit.sol

| Detected Issues

ID Title Severity Status

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 10

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

9

10 pragma solidity ^0.8.0;

11

12 /**

13 * @dev Provides information about the current execution context, including the

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 37

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

36

37 pragma solidity ^0.8.0;

38

39

40 /**

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 115

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

114

115 pragma solidity ^0.8.0;

116

117

118 /**

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 222

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

221

222 pragma solidity ^0.8.0;

223

224 /**

225 * @dev Interface of the ERC20 standard as defined in the EIP.

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 307

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

306

307 pragma solidity ^0.8.0;

308

309

310 /**

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 337

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

336

337 pragma solidity ^0.8.0;

338

339

340

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 728

low SEVERITY
The current pragma Solidity directive is ""^0.8.0"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

727

728 pragma solidity ^0.8.0;

729

730

731

MetaRabbit | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 767

low SEVERITY
The current pragma Solidity directive is ""^0.8.9"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- MetaRabbit.sol

Locations

766

767 pragma solidity ^0.8.9;

768

769

770

MetaRabbit | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

MetaRabbit | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

