
Tender.fi

Smart Contract
Audit Report

06 Jan 2023

Tender.fi | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

Tender.fi | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

Tender.fi TND Arbitrum

| Addresses

Contract address 0xc47d9753f3b32aa9548a7c3f30b6aec3b2d2798c

Contract deployer address 0x5BffD59217c3c1De7D422Ce4f0D87Ce97DF8395c

| Project Website

https://www.tender.fi/

| Codebase

https://arbiscan.io/address/0xc47d9753f3b32aa9548a7c3f30b6aec3b2d2798c#code

https://www.tender.fi/
https://arbiscan.io/address/0xc47d9753f3b32aa9548a7c3f30b6aec3b2d2798c#code

Tender.fi | Security Analysis

SUMMARY

Tender.fi is a decentralized open-source protocol for borrowing and lending that is leading the way in
innovation. It aims to provide support for autocompounding and collateralization for popular DeFi assets,
starting with GMX and GLP. This is a unique and important aspect of the protocol, as it allows for the
collateralization of long-tail assets. Tender.fi's approach to borrowing and lending is what sets it apart from
other DeFi protocols.

| Contract Summary

Documentation Quality

Tender.fi provides a very poor documentation with standard of solidity base code.

The technical description is provided unclear and disorganized.

Code Quality

The Overall quality of the basecode is poor.

Solidity basecode and rules are unclear and disorganized by Tender.fi.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 49.
SWC-107 | It is recommended to use a reentrancy lock, reentrancy weaknesses detected on lines 776,
777, 753, 753, 754, 754, 756, 759 and 165.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 165.
SWC-113 SWC-128 | It is recommended to implement the contract logic to handle failed calls and block
gas limit on lines 778.

Tender.fi | Security Analysis

CONCLUSION

We have audited the Tender.fi project released in January 2023 to find issues and identify potential security
vulnerabilities in the Tender.fi project. This process is used to find the technical problems and security
loopholes that may be found in smart contracts.

The security audit report gave unsatisfactory results with the discovery of medium-risk issues and several
other low-risk issues.

Writing a contract that does not follow the Solidity style guide can pose a significant risk. The medium-risk and
low problems we found in the smart contract are multiple calls are executed in the same transaction, a floating
pragma is set, read of persistent state following the external call, a call to a user-supplied address is executed,
and requirement violation. This call is executed following another call within the same transaction. It is
possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally by
a malicious callee. If possible, refactor the code such that each transaction only executes one external call or
make sure that all callees can be trusted (i.e. they're part of your own codebase). A requirement was violated in
a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for
instance, via passed arguments).

Tender.fi | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

PASS

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

PASS

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

ISSUE
FOUND

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

Tender.fi | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a
specific contract state unless required.

ISSUE
FOUND

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only
once during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only
authorized user or contract accounts may write to
sensitive storage locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

Tender.fi | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

Tender.fi | Security Analysis

SMART CONTRACT ANALYSIS

Started Thursday Jan 05 2023 05:37:45 GMT+0000 (Coordinated Universal Time)

Finished Friday Jan 06 2023 02:58:48 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File TND.sol

| Detected Issues

ID Title Severity Status

SWC-113 MULTIPLE CALLS ARE EXECUTED IN THE SAME TRANSACTION. medium acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 WRITE TO PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 READ OF PERSISTENT STATE FOLLOWING EXTERNAL CALL. low acknowledged

SWC-107 A CALL TO A USER-SUPPLIED ADDRESS IS EXECUTED. low acknowledged

SWC-123 REQUIREMENT VIOLATION. low acknowledged

Tender.fi | Security Analysis

SWC-113 | MULTIPLE CALLS ARE EXECUTED IN THE SAME
TRANSACTION.
LINE 778

medium SEVERITY
This call is executed following another call within the same transaction. It is possible that the call never gets
executed if a prior call fails permanently. This might be caused intentionally by a malicious callee. If possible,
refactor the code such that each transaction only executes one external call or make sure that all callees can
be trusted (i.e. they're part of your own codebase).

Source File
- TND.sol

Locations

777 address yieldTracker = yieldTrackers[i];

778 IYieldTracker(yieldTracker).updateRewards(_account);

779 }

780 }

781 }

782

Tender.fi | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 49

low SEVERITY
The current pragma Solidity directive is ""^0.6.2"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- TND.sol

Locations

48

49 pragma solidity ^0.6.2;

50

51 /**

52 * @dev Collection of functions related to the address type

53

Tender.fi | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 776

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

775 function _updateRewards(address _account) private {

776 for (uint256 i = 0; i < yieldTrackers.length; i++) {

777 address yieldTracker = yieldTrackers[i];

778 IYieldTracker(yieldTracker).updateRewards(_account);

779 }

780

Tender.fi | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 777

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

776 for (uint256 i = 0; i < yieldTrackers.length; i++) {

777 address yieldTracker = yieldTrackers[i];

778 IYieldTracker(yieldTracker).updateRewards(_account);

779 }

780 }

781

Tender.fi | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 753

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

752

753 balances[_sender] = balances[_sender].sub(_amount, "BaseToken: transfer amount

exceeds balance");

754 balances[_recipient] = balances[_recipient].add(_amount);

755

756 if (nonStakingAccounts[_sender]) {

757

Tender.fi | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 753

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

752

753 balances[_sender] = balances[_sender].sub(_amount, "BaseToken: transfer amount

exceeds balance");

754 balances[_recipient] = balances[_recipient].add(_amount);

755

756 if (nonStakingAccounts[_sender]) {

757

Tender.fi | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 754

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

753 balances[_sender] = balances[_sender].sub(_amount, "BaseToken: transfer amount

exceeds balance");

754 balances[_recipient] = balances[_recipient].add(_amount);

755

756 if (nonStakingAccounts[_sender]) {

757 nonStakingSupply = nonStakingSupply.sub(_amount);

758

Tender.fi | Security Analysis

SWC-107 | WRITE TO PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 754

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

753 balances[_sender] = balances[_sender].sub(_amount, "BaseToken: transfer amount

exceeds balance");

754 balances[_recipient] = balances[_recipient].add(_amount);

755

756 if (nonStakingAccounts[_sender]) {

757 nonStakingSupply = nonStakingSupply.sub(_amount);

758

Tender.fi | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 756

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

755

756 if (nonStakingAccounts[_sender]) {

757 nonStakingSupply = nonStakingSupply.sub(_amount);

758 }

759 if (nonStakingAccounts[_recipient]) {

760

Tender.fi | Security Analysis

SWC-107 | READ OF PERSISTENT STATE FOLLOWING
EXTERNAL CALL.
LINE 759

low SEVERITY
The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing
the state only before the call, especially if the callee is untrusted. Alternatively, a reentrancy lock can be used to
prevent untrusted callees from re-entering the contract in an intermediate state.

Source File
- TND.sol

Locations

758 }

759 if (nonStakingAccounts[_recipient]) {

760 nonStakingSupply = nonStakingSupply.add(_amount);

761 }

762

763

Tender.fi | Security Analysis

SWC-107 | A CALL TO A USER-SUPPLIED ADDRESS IS
EXECUTED.
LINE 165

low SEVERITY
An external message call to an address specified by the caller is executed. Note that the callee account might
contain arbitrary code and could re-enter any function within this contract. Reentering the contract in an
intermediate state may lead to unexpected behaviour. Make sure that no state modifications are executed
after this call and/or reentrancy guards are in place.

Source File
- TND.sol

Locations

164 // solhint-disable-next-line avoid-low-level-calls

165 (bool success, bytes memory returndata) = target.call{ value: value }(data);

166 return _verifyCallResult(success, returndata, errorMessage);

167 }

168

169

Tender.fi | Security Analysis

SWC-123 | REQUIREMENT VIOLATION.
LINE 165

low SEVERITY
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are
provided to the nested call (for instance, via passed arguments).

Source File
- TND.sol

Locations

164 // solhint-disable-next-line avoid-low-level-calls

165 (bool success, bytes memory returndata) = target.call{ value: value }(data);

166 return _verifyCallResult(success, returndata, errorMessage);

167 }

168

169

Tender.fi | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

Tender.fi | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

