
KIKI

Smart Contract
Audit Report

30 Nov 2021

KIKI | Security Analysis

TABLE OF CONTENTS

| Audited Details
Audited Project-
Blockchain-
Addresses-
Project Website-
Codebase-

| Summary
Contract Summary-
Audit Findings Summary-
Vulnerabilities Summary-

| Conclusion

| Audit Results

| Smart Contract Analysis
Detected Vulnerabilities-

| Disclaimer

| About Us

KIKI | Security Analysis

AUDITED DETAILS

| Audited Project

Project name Token ticker Blockchain

KIKI KIKI Ethereum

| Addresses

Contract address 0x369b77bbeeee50e6ea206dcf41ee670c47360055

Contract deployer address 0xbb616316B47c91240604A1E17Ac20fb677873302

| Project Website

https://www.tabinekokiki.com/

| Codebase

https://etherscan.io/address/0x369b77bbeeee50e6ea206dcf41ee670c47360055#code

https://www.tabinekokiki.com/
https://etherscan.io/address/0x369b77bbeeee50e6ea206dcf41ee670c47360055#code

KIKI | Security Analysis

SUMMARY

Far more than a crypto project, KIKI is a Movement. Combined with NFT, Novel, Charity, and Love, KIKI is one of
its kind, a blockchain project with the love of art and charity, an art project with the spirit of blockchain.

| Contract Summary

Documentation Quality

KIKI provides a very good documentation with standard of solidity base code.

The technical description is provided clearly and structured and also dont have any high risk issue.

Code Quality

The Overall quality of the basecode is standard.

Standard solidity basecode and rules are already followed by KIKI with the discovery of several low
issues.

Test Coverage

Test coverage of the project is 100% (Through Codebase)

| Audit Findings Summary

SWC-100 SWC-108 | Explicitly define visibility for all state variables on lines 1093.
SWC-101 | It is recommended to use vetted safe math libraries for arithmetic operations consistently on
lines 114, 132, 151, 152, 169, 185, 200, 214, 228, 242, 258, 281, 308, 334, 689, 1070, 1070, 1071, 1071,
1096, 1096, 1097, 1097, 1307, 1309, 1342, 1450, 1481, 1489, 1493 and 1309.
SWC-103 | Pragma statements can be allowed to float when a contract is intended on lines 1.
SWC-110 SWC-123 | It is recommended to use of revert(), assert(), and require() in Solidity, and the new
REVERT opcode in the EVM on lines 1308, 1309, 1309, 1452, 1453, 1455, 1456, 1614 and 1615.

KIKI | Security Analysis

CONCLUSION

We have audited the KIKI project released on November 2021 to discover issues and identify potential security
vulnerabilities in KIKI Project. This process is used to find technical issues and security loopholes which might
be found in the smart contract.

The security audit report provides a satisfactory result with some low-risk issues.

The issues found in the KIKI smart contract code do not pose a considerable risk. The writing of the contract is
close to the standard of writing contracts in general. The low-risk issues found are some arithmetic operation
issues, a floating pragma is set, a state variable visibility is not set, and out-of-bounds array access which the
index access expression can cause an exception in case of the use of an invalid array index value.

KIKI | Security Analysis

AUDIT RESULT

Article Category Description Result

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly. Visibility levels should be specified
consciously.

ISSUE
FOUND

Integer Overflow
and Underflow

SWC-101
If unchecked math is used, all math operations
should be safe from overflows and underflows.

ISSUE
FOUND

Outdated Compiler
Version

SWC-102
It is recommended to use a recent version of the
Solidity compiler.

PASS

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

ISSUE
FOUND

Unchecked Call
Return Value

SWC-104
The return value of a message call should be
checked.

PASS

Unprotected Ether
Withdrawal

SWC-105
Due to missing or insufficient access controls,
malicious parties can withdraw from the contract.

PASS

SELFDESTRUCT
Instruction

SWC-106
The contract should not be self-destructible while it
has funds belonging to users.

PASS

Reentrancy SWC-107
Check effect interaction pattern should be followed
if the code performs recursive call.

PASS

Uninitialized
Storage Pointer

SWC-109
Uninitialized local storage variables can point to
unexpected storage locations in the contract.

PASS

Assert Violation
SWC-110
SWC-123

Properly functioning code should never reach a
failing assert statement.

ISSUE
FOUND

Deprecated Solidity
Functions

SWC-111 Deprecated built-in functions should never be used. PASS

Delegate call to
Untrusted Callee

SWC-112
Delegatecalls should only be allowed to trusted
addresses.

PASS

KIKI | Security Analysis

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be blocked by a specific
contract state unless required.

PASS

Race Conditions SWC-114
Race Conditions and Transactions Order Dependency
should not be possible.

PASS

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. PASS

Block values as a
proxy for time

SWC-116 Block numbers should not be used for time calculations. PASS

Signature Unique
ID

SWC-117
SWC-121
SWC-122

Signed messages should always have a unique id. A
transaction hash should not be used as a unique id.

PASS

Incorrect
Constructor Name

SWC-118
Constructors are special functions that are called only once
during the contract creation.

PASS

Shadowing State
Variable

SWC-119 State variables should not be shadowed. PASS

Weak Sources of
Randomness

SWC-120
Random values should never be generated from Chain
Attributes or be predictable.

PASS

Write to Arbitrary
Storage Location

SWC-124
The contract is responsible for ensuring that only authorized
user or contract accounts may write to sensitive storage
locations.

PASS

Incorrect
Inheritance Order

SWC-125

When inheriting multiple contracts, especially if they have
identical functions, a developer should carefully specify
inheritance in the correct order. The rule of thumb is to
inherit contracts from more /general/ to more /specific/.

PASS

Insufficient Gas
Griefing

SWC-126
Insufficient gas griefing attacks can be performed on
contracts which accept data and use it in a sub-call on
another contract.

PASS

Arbitrary Jump
Function

SWC-127
As Solidity doesnt support pointer arithmetics, it is
impossible to change such variable to an arbitrary value.

PASS

KIKI | Security Analysis

Typographical
Error

SWC-129
A typographical error can occur for example when the intent
of a defined operation is to sum a number to a variable.

PASS

Override control
character

SWC-130
Malicious actors can use the Right-To-Left-Override unicode
character to force RTL text rendering and confuse users as
to the real intent of a contract.

PASS

Unused variables
SWC-131
SWC-135

Unused variables are allowed in Solidity and they do not pose
a direct security issue.

PASS

Unexpected Ether
balance

SWC-132
Contracts can behave erroneously when they strictly assume
a specific Ether balance.

PASS

Hash Collisions
Variable

SWC-133
Using abi.encodePacked() with multiple variable length
arguments can, in certain situations, lead to a hash collision.

PASS

Hardcoded gas
amount

SWC-134
The transfer() and send() functions forward a fixed amount
of 2300 gas.

PASS

Unencrypted
Private Data

SWC-136
It is a common misconception that private type variables
cannot be read.

PASS

KIKI | Security Analysis

SMART CONTRACT ANALYSIS

Started Monday Nov 29 2021 21:55:08 GMT+0000 (Coordinated Universal Time)

Finished Tuesday Nov 30 2021 08:53:40 GMT+0000 (Coordinated Universal Time)

Mode Standard

Main Source File KIKI.sol

| Detected Issues

ID Title Severity Status

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "/" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "+" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "%" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "*" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "-" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "++" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 ARITHMETIC OPERATION "**" DISCOVERED low acknowledged

SWC-101 COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED low acknowledged

SWC-103 A FLOATING PRAGMA IS SET. low acknowledged

SWC-108 STATE VARIABLE VISIBILITY IS NOT SET. low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

SWC-110 OUT OF BOUNDS ARRAY ACCESS low acknowledged

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 114

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

113 unchecked {

114 uint256 c = a + b;

115 if (c < a) return (false, 0);

116 return (true, c);

117 }

118

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 132

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

131 if (b > a) return (false, 0);

132 return (true, a - b);

133 }

134 }

135

136

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 151

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

150 if (a == 0) return (true, 0);

151 uint256 c = a * b;

152 if (c / a != b) return (false, 0);

153 return (true, c);

154 }

155

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 152

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

151 uint256 c = a * b;

152 if (c / a != b) return (false, 0);

153 return (true, c);

154 }

155 }

156

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 169

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

168 if (b == 0) return (false, 0);

169 return (true, a / b);

170 }

171 }

172

173

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 185

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

184 if (b == 0) return (false, 0);

185 return (true, a % b);

186 }

187 }

188

189

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 200

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

199 function add(uint256 a, uint256 b) internal pure returns (uint256) {

200 return a + b;

201 }

202

203 /**

204

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 214

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

213 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

214 return a - b;

215 }

216

217 /**

218

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 228

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

227 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

228 return a * b;

229 }

230

231 /**

232

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 242

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

241 function div(uint256 a, uint256 b) internal pure returns (uint256) {

242 return a / b;

243 }

244

245 /**

246

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 258

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

257 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

258 return a % b;

259 }

260

261 /**

262

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 281

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

280 require(b <= a, errorMessage);

281 return a - b;

282 }

283 }

284

285

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "/" DISCOVERED
LINE 308

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

307 require(b > 0, errorMessage);

308 return a / b;

309 }

310 }

311

312

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 334

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

333 require(b > 0, errorMessage);

334 return a % b;

335 }

336 }

337 }

338

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "+" DISCOVERED
LINE 689

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

688 _owner = address(0);

689 _lockTime = block.timestamp + time;

690 emit OwnershipTransferred(_owner, address(0));

691 }

692

693

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1070

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1069 uint256 private constant MAX = ~uint256(0);

1070 uint256 private _tTotal = 100_000_000 * 10**18;

1071 uint256 private _rTotal = (MAX - (MAX % _tTotal));

1072 uint256 private _tFeeTotal;

1073

1074

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1070

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1069 uint256 private constant MAX = ~uint256(0);

1070 uint256 private _tTotal = 100_000_000 * 10**18;

1071 uint256 private _rTotal = (MAX - (MAX % _tTotal));

1072 uint256 private _tFeeTotal;

1073

1074

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1071

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1070 uint256 private _tTotal = 100_000_000 * 10**18;

1071 uint256 private _rTotal = (MAX - (MAX % _tTotal));

1072 uint256 private _tFeeTotal;

1073

1074 string private _name = "KIKI";

1075

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "%" DISCOVERED
LINE 1071

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1070 uint256 private _tTotal = 100_000_000 * 10**18;

1071 uint256 private _rTotal = (MAX - (MAX % _tTotal));

1072 uint256 private _tFeeTotal;

1073

1074 string private _name = "KIKI";

1075

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1096

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1095

1096 uint256 public _maxTxAmount = 100_000_000 * 10**18;

1097 uint256 private numTokensSellToAddToLiquidity = 300_000 * 10**18;

1098

1099 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

1100

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1096

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1095

1096 uint256 public _maxTxAmount = 100_000_000 * 10**18;

1097 uint256 private numTokensSellToAddToLiquidity = 300_000 * 10**18;

1098

1099 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

1100

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "*" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1096 uint256 public _maxTxAmount = 100_000_000 * 10**18;

1097 uint256 private numTokensSellToAddToLiquidity = 300_000 * 10**18;

1098

1099 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

1100 event SwapAndLiquifyEnabledUpdated(bool enabled);

1101

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1097

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1096 uint256 public _maxTxAmount = 100_000_000 * 10**18;

1097 uint256 private numTokensSellToAddToLiquidity = 300_000 * 10**18;

1098

1099 event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

1100 event SwapAndLiquifyEnabledUpdated(bool enabled);

1101

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1307

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1306 require(_isExcluded[account], "Account is already included");

1307 for (uint256 i = 0; i < _excluded.length; i++) {

1308 if (_excluded[i] == account) {

1309 _excluded[i] = _excluded[_excluded.length - 1];

1310 _tOwned[account] = 0;

1311

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "-" DISCOVERED
LINE 1309

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1308 if (_excluded[i] == account) {

1309 _excluded[i] = _excluded[_excluded.length - 1];

1310 _tOwned[account] = 0;

1311 _isExcluded[account] = false;

1312 _excluded.pop();

1313

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1342

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1341 function setMaxTxPercent(uint256 maxTxPercent) external onlyOwner {

1342 _maxTxAmount = _tTotal.mul(maxTxPercent).div(10**2);

1343 }

1344

1345 function setMarketingWallet(address payable marketingWallet)

1346

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "++" DISCOVERED
LINE 1450

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1449 uint256 tSupply = _tTotal;

1450 for (uint256 i = 0; i < _excluded.length; i++) {

1451 if (

1452 _rOwned[_excluded[i]] > rSupply ||

1453 _tOwned[_excluded[i]] > tSupply

1454

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1481

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1480 function calculateTaxFee(uint256 _amount) private view returns (uint256) {

1481 return _amount.mul(_taxFee).div(10**2);

1482 }

1483

1484 function calculateLiquidityFee(uint256 _amount)

1485

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1489

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1488 {

1489 return _amount.mul(_liquidityFee).div(10**2);

1490 }

1491

1492 function calculateBurnFee(uint256 _amount) private view returns (uint256) {

1493

KIKI | Security Analysis

SWC-101 | ARITHMETIC OPERATION "**" DISCOVERED
LINE 1493

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1492 function calculateBurnFee(uint256 _amount) private view returns (uint256) {

1493 return _amount.mul(_burnFee).div(10**2);

1494 }

1495

1496 function removeAllFee() private {

1497

KIKI | Security Analysis

SWC-101 | COMPILER-REWRITABLE "<UINT> - 1" DISCOVERED
LINE 1309

low SEVERITY
This plugin produces issues to support false positive discovery within mythril.

Source File
- KIKI.sol

Locations

1308 if (_excluded[i] == account) {

1309 _excluded[i] = _excluded[_excluded.length - 1];

1310 _tOwned[account] = 0;

1311 _isExcluded[account] = false;

1312 _excluded.pop();

1313

KIKI | Security Analysis

SWC-103 | A FLOATING PRAGMA IS SET.
LINE 1

low SEVERITY
The current pragma Solidity directive is ""^0.8.5"". It is recommended to specify a fixed compiler version to
ensure that the bytecode produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

Source File
- KIKI.sol

Locations

0

1 pragma solidity ^0.8.5;

2

3 // SPDX-License-Identifier: Unlicensed

4

5

KIKI | Security Analysis

SWC-108 | STATE VARIABLE VISIBILITY IS NOT SET.
LINE 1093

low SEVERITY
It is best practice to set the visibility of state variables explicitly. The default visibility for "inSwapAndLiquify" is
internal. Other possible visibility settings are public and private.

Source File
- KIKI.sol

Locations

1092

1093 bool inSwapAndLiquify;

1094 bool public swapAndLiquifyEnabled = true;

1095

1096 uint256 public _maxTxAmount = 100_000_000 * 10**18;

1097

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1308

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1307 for (uint256 i = 0; i < _excluded.length; i++) {

1308 if (_excluded[i] == account) {

1309 _excluded[i] = _excluded[_excluded.length - 1];

1310 _tOwned[account] = 0;

1311 _isExcluded[account] = false;

1312

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1309

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1308 if (_excluded[i] == account) {

1309 _excluded[i] = _excluded[_excluded.length - 1];

1310 _tOwned[account] = 0;

1311 _isExcluded[account] = false;

1312 _excluded.pop();

1313

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1309

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1308 if (_excluded[i] == account) {

1309 _excluded[i] = _excluded[_excluded.length - 1];

1310 _tOwned[account] = 0;

1311 _isExcluded[account] = false;

1312 _excluded.pop();

1313

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1452

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1451 if (

1452 _rOwned[_excluded[i]] > rSupply ||

1453 _tOwned[_excluded[i]] > tSupply

1454) return (_rTotal, _tTotal);

1455 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1456

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1453

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1452 _rOwned[_excluded[i]] > rSupply ||

1453 _tOwned[_excluded[i]] > tSupply

1454) return (_rTotal, _tTotal);

1455 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1456 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1457

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1455

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1454) return (_rTotal, _tTotal);

1455 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1456 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1457 }

1458 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1459

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1456

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1455 rSupply = rSupply.sub(_rOwned[_excluded[i]]);

1456 tSupply = tSupply.sub(_tOwned[_excluded[i]]);

1457 }

1458 if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal);

1459 return (rSupply, tSupply);

1460

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1614

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1613 address[] memory path = new address[](2);

1614 path[0] = address(this);

1615 path[1] = uniswapV2Router.WETH();

1616

1617 _approve(address(this), address(uniswapV2Router), tokenAmount);

1618

KIKI | Security Analysis

SWC-110 | OUT OF BOUNDS ARRAY ACCESS
LINE 1615

low SEVERITY
The index access expression can cause an exception in case of use of invalid array index value.

Source File
- KIKI.sol

Locations

1614 path[0] = address(this);

1615 path[1] = uniswapV2Router.WETH();

1616

1617 _approve(address(this), address(uniswapV2Router), tokenAmount);

1618

1619

KIKI | Security Analysis

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to, or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without Sysfixed’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts Sysfixed to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model, or legal
compliance.

This is a limited report on our findings based on our analysis, in accordance with good industry practice as of
the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms
based on smart contracts, the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and cannot claim against us
on the basis of what it says or doesn’t say, or how we produced it, and it is important for you to conduct your
own independent investigations before making any decisions. We go into more detail on this in the below
disclaimer below – please make sure to read it in full.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

This report is provided for information purposes only and on a non-reliance basis and does not constitute
investment advice. No one shall have any right to rely on the report or its contents, and Sysfixed and its
affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers, and other
representatives) (Sysfixed) owe no duty of care.

KIKI | Security Analysis

ABOUT US

Sysfixed is a blockchain security certification organization established in 2021 with the objective to provide
smart contract security services and verify their correctness in blockchain-based protocols. Sysfixed
automatically scans for security vulnerabilities in Ethereum and other EVM-based blockchain smart contracts.
Sysfixed a comprehensive range of analysis techniques—including static analysis, dynamic analysis, and
symbolic execution—can accurately detect security vulnerabilities to provide an in-depth analysis report. With a
vibrant ecosystem of world-class integration partners that amplify developer productivity, Sysfixed can be
utilized in all phases of your project's lifecycle. Our team of security experts is dedicated to the research and
improvement of our tools and techniques used to fortify your code.

